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Robotics for Medical Interventions

Rehabilitation Prosthetics
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Robot-Assisted Minimally Invasive Surgery

* Design does not fully consider the sensorimotor capabilities of
the surgeon

* Training methods have not been optimized

Studying the sensorimotor system could impact both!
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Computational Motor Control

The science of how the brain controls motion and
represents the external world

We move in surprisingly
regular ways...

Morasso, 1981



Adaptation to Perturbations
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To build robotic systems that are
operated by humans, we should:

— Study the human operator

— Apply findings to design, control,
and training

Operators interact with robotic
devices

— This allows us to study the
human operator in
unprecedented ways




Surgery

Minimally Invasive Robot-Assisted

Intuitive Surgical



Sensorimotor Performance in RAS

Cognitive control
strategies

e

Surgeon action
(e.g. movement)

P

Tool action
(e.g. tool moves)
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‘ ( Patient interaction
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Jarc and Nisky, 2015



Sensorimotor Performance in RAS

Can we use (and extend) what we know about

human motor control

to improve

design, control, and training
N
Robot-Assisted Surgery?



Sensorimotor Performance in RAS

Compare teleoperated vs. freehand movements,
and expert vs. novice participants

— Teleoperation vs. freehand => robot design

— Experts vs. novices => skill evaluation and training

(1) Tool-tip kinematics

(2) Arm posture variability




Experimental Setup




Experimental Setup

Pose trackers on user arm Grasp fixture —
position and force sensing
at tool tip
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Experimental Procedures

reversal
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Teleoperation




Freehand




Kinematics Variability




Kinematics Variability
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Deviation from Straight Line
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Performance
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Learning effects
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Learning effects

All groups learn the task within 3-4
movement blocks in the first session

Teleoperating novices also learn system
dynamics
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Kinematics Variability
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Redundancy and Variability

Human arm is a redundant
manipulator

How is redundancy resolved?
— Bernstein, 1967

Motor system constrains only

task relevant variability

— Uncontrolled Manifold Hypothesis
Scholtz ans Schoner, 1999

— Minimum intervention principle
Todorov 2002
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Uncontrolled Manifold Hypothesis

Task space
xt [mm]

0 0.5 .
normalized time normalized time

2 kinds of trial-to-trial
variability in joint angles

— Changes task performance: V_

— Doesn’t change task

performance: V ,, .

Nisky et al., ICRA 2013

Joint space

Variability
coordination

szlog(vother/vtask)
R, >0 stabilize
R,=0 independent
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Variability in Joint Space - Uncontrolled Manifold

Forward kinematics x[t]= F(q[t])

x[1]-X[*1=J(q(*])(ql]-q[?])

Linearize FWD kinematics

e
Calculate null space J(qlz])-e

t]=ee’ (q[t]—qt
Project variance onto null and Guem!!] ((_1[ )
orthogonal spaces dorr[?1=(alr1-ql1]) — quem?]

[ N
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Z qORT[t] dtaskN_
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Variability Predictions

XY movements are stabilized R,>0

/ movements are not R,=0

Larger R, of experts
Skill increases R, (Muller and Sternad, 2004)

Smaller R, in teleoperation



Coordination of Arm Posture Variability
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Rv and Performance
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“Dexterous” Task: Needle driving

Clinically relevant movement

Complexity
3D movement
Tissue interaction

Orientation is critical

Conditions and participants

Teleoperated v. open

Experienced surgeons V. NOVICEeS  Nisky et al., ICRA 2015



Experimental Setup

Open — magnetic tracking

Teleoperated - dVRK
P instrumented needle driver
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Learning Curves

novices experts
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Learning Curves Summary

Open needle driving is faster, but with same

needle path length

All participants improve movement time

Only novices improve movement length
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Training a manipulation task
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Conclusions

The dynamics of the master manipulator matter

Experts have adapted and are better

Experts exploit the redundancy of their arm more
than novices, especially in teleoperation |

Learning trends also exist during manipulation

Resistive training may improve learning and
performance



Future Work

Analysis of interaction forces and
dynamic modeling of user in
teleoperation and freehand

Analysis of redundancy
exploitation in needle driving
experiment

What is the role of haptic
feedback?




To build robotic systems that are
operated by humans, we should:

— Study the human operator

— Apply findings to design, control,
and training

Operators interact with robotic
devices

— This allows us to study the
human operator in
unprecedented ways
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