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Rehabilita)on

Robot-assisted	surgery

Prosthe)cs
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RoboDcs	for	Medical	IntervenDons



Robot-Assisted	Minimally	Invasive	Surgery

• Design	does	not	fully	consider	the	sensorimotor	capabiliDes	of	
the	surgeon	

• Training	methods	have	not	been	opDmized	

Studying	the	sensorimotor	system	could	impact	both!
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ComputaDonal	Motor	Control

The	science	of	how	the	brain	controls	moDon	and	
represents	the	external	world	

We	move	in	surprisingly	 
regular	ways…

Morasso,	1981



AdaptaDon	to	PerturbaDons

MarDn	et	al.,	1996 Shadmehr	and	Mussa-Ivaldi,	1994



Take	Home

To	build	roboDc	systems	that	are	
operated	by	humans,	we	should:	

– Study	the	human	operator	
– Apply	findings	to	design,	control,	
and	training	

Operators	interact	with	roboDc	
devices		

– This	allows	us	to	study	the	 
human	operator	in	  
unprecedented	ways
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Open Minimally	Invasive Robot-Assisted

Surgery

IntuiDve	Surgical	



Sensorimotor	Performance	in	RAS
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Cognitive control 

strategies

Surgeon action 	
(e.g. movement)

Tool action 	
(e.g. tool moves) 

Patient interactionSensory feedback

Jarc	and	Nisky,	2015



Sensorimotor	Performance	in	RAS

Can	we	use	(and	extend)	what	we	know	about		

human	motor	control		
to	improve		

design,	control,	and	training		
in  

Robot-Assisted	Surgery?
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Compare	teleoperated	vs.	freehand	movements,	
and	expert	vs.	novice	parDcipants	

– TeleoperaDon	vs.	freehand		=>		robot	design	

– Experts	vs.	novices		=>		skill	evaluaDon	and	training
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Sensorimotor	Performance	in	RAS

(1) Tool-Dp	kinemaDcs	

(2) Arm	posture	variability
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Experimental	Setup
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Experimental	Setup

Grasp	fixture	–	  
posiDon	and	force	sensing	

at	tool	Dp
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Pose	trackers	on	user	arm
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Experimental	Procedures

short	
reversal	
target

long	
reach	
target

Good
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TeleoperaDon
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Freehand

15
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KinemaDcs Variability
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KinemaDcs Variability
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Data	Analysis	-	Reach

peak		
acceleraDon

peak	speed	

peak		
deceleraDon

end	of	movement

correcDve	
movement

fused	correcDve	
									movement

ve
lo
ci
ty
	

[m
m
/s
ec
]

ac
ce
le
ra
D
on
	

[m
m
/s
ec

2 ]
sp
ee
d	

[		
m
m
/s
ec
]

sp
ee
d	
de

r.	
[m

m
/s
ec

2 ]
			

Dme	[sec] Dme	[sec] Dme	[sec]

po
si
D
on
	

[m
m
]

Nisky	et	al.,	
MMVR2013



Novice Expert
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Deviation from Straight Line

Nisky	et	al.,	Surgical	
Endoscopy	2014First	trial Last	trial

10mm

Novice Expert

 

 



Performance
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Endpoint	Error	*	Movement	Time

novice tele
novice free
expert tele
expert free

Nisky	et	al.,	Surgical	
Endoscopy	2014



Learning	effects
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novice tele
novice free
expert tele
expert free

Nisky	et	al.,	
2014



Learning	effects

Session	1 Session	2

All	groups	learn	the	task	within	3-4	
movement	blocks	in	the	first	session	

TeleoperaDng	novices	also	learn	system	
dynamics

22

novice tele
novice free
expert tele
expert free

Nisky	et	al.,	
2014
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KinemaDcs Variability



Redundancy	and	Variability

Human	arm	is	a	redundant	
manipulator	

How	is	redundancy	resolved?		
– Bernstein,	1967	

Motor	system	constrains	only	
task	relevant	variability	

– Uncontrolled	Manifold	Hypothesis	
Scholtz	ans	Schoner,	1999		

– Minimum	intervenDon	principle	
Todorov	2002
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Uncontrolled	Manifold	Hypothesis

2	kinds	of	trial-to-trial	
variability	in	joint	angles	

– Changes	task	performance:		Vtask	

– Doesn’t	change	task	
performance:	Vother

Variability	
coordinaDon	

RV=log(Vother/Vtask)	

RV>0	stabilize	

RV=0	independent
25Nisky	et	al.,	ICRA	2013

Task	space Joint		space



Forward	kinemaDcs	

Linearize	FWD	kinemaDcs	

Calculate	null	space	

Project	variance	onto	null	and	
orthogonal	spaces		

Calculate	log	of	  
variance	raDo

Details	in	Nisky	et	al.,	ICRA	2013,	
Nisky	et	al.,	IEEE	TBME	2014	

J(q[t]) ⋅e = 0

qUCM[t]= ee
T q[t]− q[t]( )

qORT[t]= q[t]− q[t]( )− qUCM[t]

x[t]− x[t]= J(q[t]) q[t]− q[t]( )

x[t]= F q[t]( )

Rv[t]= log
qUCM[t]( )2

i=1
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Variability	in	Joint	Space	-	Uncontrolled	Manifold



Variability	PredicDons

XY	movements	are	stabilized						RV>0	

Z	movements	are	not																			RV=0	

Larger	RV	of	experts	

	 Skill	increases	RV	(Muller	and	Sternad,	2004)	

Smaller	RV	in	teleoperaDon	



CoordinaDon	of	Arm	Posture	Variability

The	task	requires	only	
accurate		XY	movements	
									XY	movements				RV>0	

									Z	movements							RV=0	

Experience	
	 Larger	RV	of	experts	
	 	

TeleoperaDon		
	 Experts	RV	increase	

	 Novices	RV	decrease

28

Nisky	et	al.,	IEEE		
TBME	2014
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Rv	and	Performance
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Nisky	et	al.,	IEEE		
TBME	2014
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“Dexterous”	Task:	Needle	driving

Clinically	relevant	movement	

Complexity	
3D	movement		

Tissue	interacDon	

OrientaDon	is	criDcal	

CondiDons	and	parDcipants	
Teleoperated	v.	open	

Experienced	surgeons	v.	novices 30Nisky	et	al.,	ICRA	2015



Experimental	Setup
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Teleoperated	-	dVRK
Open	–	magneDc	tracking	
instrumented	needle	driver



Needle	Driving	Task
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Learning	Curves
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Learning	Curves	Summary

Open	needle	driving	is	faster,	but	with	same	 
needle	path	length	

All	parDcipants	improve	movement	Dme	

Only	novices	improve	movement	length

34



Training	a	manipulaDon	task

35

Coad	et	al.,	
submived

	 	



Conclusions

The dynamics of the master manipulator matter 	

Experts have adapted and are better	

Experts exploit the redundancy of their arm more 
than novices, especially in teleoperation 

Learning trends also exist during manipulation 

Resistive training may improve learning and 
performance
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Future	Work

Analysis	of	interacDon	forces	and	
dynamic	modeling	of	user	in	
teleoperaDon	and	freehand	

Analysis	of	redundancy	
exploitaDon	in	needle	driving	
experiment		

What	is	the	role	of	hapDc	
feedback?	
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Take	Home

To	build	roboDc	systems	that	are	
operated	by	humans,	we	should:	

– Study	the	human	operator	
– Apply	findings	to	design,	control,	
and	training	

Operators	interact	with	roboDc	
devices		

– This	allows	us	to	study	the	 
human	operator	in	  
unprecedented	ways
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Thank	You
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