Human Motor Performance in Robot-Assisted Surgery

Allison Okamura

Department of Mechanical Engineering Stanford University

In collaboration with Ilana Nisky and Anthony Jarc Students: Yuhang Che, Margaret Coad, Zhan Fan Quek Surgeons: Michael Hsieh, Tom Lendvay, Sherry Wren, and Yoav Mintz

Robotics for Medical Interventions

Rehabilitation

Prosthetics

Robot-assisted surgery

Robot-Assisted Minimally Invasive Surgery

- Design does not fully consider the sensorimotor capabilities of the surgeon
- Training methods have not been optimized

Studying the sensorimotor system could impact both!

Computational Motor Control

The science of how the brain controls motion and represents the external world

We move in surprisingly regular ways...

Morasso, 1981

Adaptation to Perturbations

Martin et al., 1996

Shadmehr and Mussa-Ivaldi, 1994

Take Home

To build robotic systems that are operated by **humans**, we should:

- Study the human operator
- Apply findings to design, control, and training

Operators interact with robotic devices

 This allows us to study the human operator in unprecedented ways

Surgery

Robot-Assisted

Minimally Invasive

Intuitive Surgical

Sensorimotor Performance in RAS

Can we use (and extend) what we know about human motor control to improve design, control, and training in **Robot-Assisted Surgery?**

Sensorimotor Performance in RAS

Compare teleoperated vs. freehand movements, and expert vs. novice participants

- Teleoperation vs. freehand => robot design
- Experts vs. novices => skill evaluation and training
 - (1) Tool-tip kinematics

(2) Arm posture variability

Experimental Setup

Experimental Setup

Pose trackers on user arm

Grasp fixture – position and force sensing at tool tip

Experimental Procedures

Teleoperation

Freehand

Kinematics

Variability

Kinematics

Variability

Data Analysis - Reach

Nisky et al., MMVR2013

Deviation from Straight Line

Performance

Endpoint Error * Movement Time

Learning effects

Learning effects

Kinematics

Variability

Redundancy and Variability

Human arm is a **redundant** manipulator

How is redundancy resolved?

– Bernstein, 1967

Motor system constrains only task relevant variability

- Uncontrolled Manifold Hypothesis
 Scholtz ans Schoner, 1999
- Minimum intervention principle Todorov 2002

Uncontrolled Manifold Hypothesis

2 kinds of trial-to-trial variability in joint angles

- Changes task performance: V_{task}
- Doesn't change task performance: V_{other}

Nisky et al., ICRA 2013

Variability coordination

 $R_{V} = log(V_{other}/V_{task})$ $R_{V} > 0 \text{ stabilize}$ $R_{V} = 0 \text{ independent}$

Variability in Joint Space - Uncontrolled Manifold

Forward kinematics

 $\mathbf{x}[t] = F(\mathbf{q}[t])$

Linearize FWD kinematics

Calculate null space

 $\mathbf{x}[t] - \overline{\mathbf{x}}[t] = \mathbf{J}(\overline{\mathbf{q}}[t]) (\mathbf{q}[t] - \overline{\mathbf{q}}[t])$

 $\mathbf{J}(\mathbf{\overline{q}}[t]) \cdot \mathbf{e} = 0$

Project variance onto null and $\begin{aligned} \mathbf{q}_{\text{UCM}}[t] &= \mathbf{e}\mathbf{e}^{T} \left(\mathbf{q}[t] - \overline{\mathbf{q}}[t]\right) \\ \mathbf{q}_{\text{ORT}}[t] &= \left(\mathbf{q}[t] - \overline{\mathbf{q}}[t]\right) - \mathbf{q}_{\text{UCM}}[t] \end{aligned}$ orthogonal spaces

Calculate log of variance ratio

Details in Nisky et al., ICRA 2013, Nisky et al., IEEE TBME 2014

$$R_{v}[t] = \log \left(\frac{\sum_{i=1}^{N} (\mathbf{q}_{UCM}[t])^{2} d_{ucm}^{-1} N^{-1}}{\sum_{i=1}^{N} (\mathbf{q}_{ORT}[t])^{2} d_{task}^{-1} N^{-1}} \right)$$

Variability Predictions

Larger R_v of experts

Skill increases R_v (Muller and Sternad, 2004)

Smaller R_v in teleoperation

Coordination of Arm Posture Variability

The task requires only
accurate XY movementsXY movements $R_V > 0$ Z movements $R_V = 0$

Experience Larger R_v of experts

Teleoperation Experts R_v increase Novices R_v decrease

Nisky et al., IEEE TBME 2014

Rv and Performance

"Dexterous" Task: Needle driving

Clinically relevant movement

- Complexity
 - 3D movement
 - **Tissue interaction**
 - Orientation is critical

Conditions and participants Teleoperated v. open Experienced surgeons v. novices

Nisky et al., ICRA 2015

Experimental Setup

Teleoperated - dVRK

Open – magnetic tracking instrumented needle driver

Needle Driving Task

Learning Curves

Learning Curves Summary

Open needle driving is faster, but with same needle path length

All participants improve movement time

Only novices improve movement length

Training a manipulation task

Coad et al., submitted

Conclusions

The dynamics of the master manipulator matter

Experts have adapted and are better

Experts exploit the redundancy of their arm more than novices, especially in teleoperation

Learning trends also exist during manipulation

Resistive training may improve learning and performance

Future Work

Analysis of interaction forces and **dynamic modeling** of user in teleoperation and freehand

Analysis of redundancy exploitation in needle driving experiment

What is the role of haptic feedback?

Take Home

To build robotic systems that are operated by **humans**, we should:

- Study the human operator
- Apply findings to design, control, and training

Operators interact with robotic devices

 This allows us to study the human operator in unprecedented ways

Thank You

This work was supported by:

- Marie Curie International Outgoing Fellowship
- Weizmann
 Institute of
 Science National
 Postdoctoral
 Award for
 Advancing
 Women in Science
- Intuitive Surgical Technology Research Grant
- Stanford University

