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Magician's Hand Manipulation Tricks
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Why Anthropomorphic Robotic Hands?

By choosing five-fingered robotic hand design, researchers want to easily transfer
knowledge of dexterous hand movements from human to robot
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Using Brain to Control Anthropomorphic Robotic Hands

Cortical homunculus shows how human brain sees the body from the inside

Motor homunculus Sensory homunculus

Introduction (Principles of Neural Science, 4th_Edition)
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Autonomous Control of Anthropomorphic Robotic Hands
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/

Movement Control Lab, University of
Washington (Mordatch et al., 2014)
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Tele-manipulation: A Practical Way to Extract Hand Dexterity
from Brain

A good hardware
mapping

Avatar, 2009

Introduction
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The Anatomically Corrected Test-Bed (ACT) Hand

Mimics:
= Bone structure
= Tendon routings
= Joint DOFs
=  Muscles
- 6 motors the fingers

- 8 motors for thumb
- 4 motors for wrist

Introduction
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Thumb Flexion Motion of The ACT Hand

Introduction
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Important Biomechanical Features Need to Be Mimicked

http://www.wisegeek.org/

Introduction
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The Conventional Mechanical Joint Used inside The ACT Hand

Typical mechanizing process

Introduction
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The Common Mechanical Analogy of The CMC Joint

The trapezium bone (cam) The first metacarpal bone
(follower)

Introduction
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The Common Mechanical Analogy of The CMC Joint

Joint Base
(the first
metacarpal bone)
& Joint head (the

Thumb Thumb Thumb trapezium bone)

abduction adduction

g

i 0
Thumb  Thumb flexion Neutral Thumb Thumb Thumb
adduction position opposition flexion abduction

(palmar view)

Introduction
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The Shapes Of The Bones Decide The Basic Kinematics
of The Human Hand

Palmar view Lateral view
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Unfixed joint axes(Crisco et al., 2015)
Introduction
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Introduction

Our Approach

Our highly biomimetic design truthfully matches kinematics of the
human hand

Biomimetic
robotic hand

Extensor

10 Dynamixel hood

Servos

<

Intrinsic
muscles

(Xu and Todorov, 2016)
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Outline

Introduction

Important Hand Biomechanics

Design & Prototype
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Perspective on Broader Impacts & Future Work
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Human Hand Anatomy

Bones Ligaments Tendon and muscles Blood
vessel &

nerves
Important Hand Biomechanics
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Bones

Palmar view Lateral view

Phalanges
-~ DIP joint
& |
/"7 * PIP joint
DIP joint &
~ MCP joint

8 Wrist bones

Trapezium Bone

Important Hand Biomechanics

\
' (= \
MCP joint 7! \
4y )/ Metacarpal bones |

Contains 27 bones with 8 small
wrist bones

Four fingers and one thumb
The scaffold for the soft tissues

Trapezium bone is crucial for
thumb opposition
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Articular Surfaces Decides Basic Kinematics and Distributes
Stress Better

jar opening

Neutral Adduction Abddctin Flexion Extension

Amy L. Ladd (2010) Halilaj et al. (2013)

Important Hand Biomechanics
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Joint ligaments

MCP Joint

MCP joint MCP joint
flexion adduction/adduction

Important Hand Biomechanics

The collateral joint ligaments — prevent
abnormal sideways bending

The volar plate -- prevents
hyperextension

Stabilize the finger joints by forming the
joint capsule

The joint capsule shapes the ROM of
the finger
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Biological Joint Requires Less Parts

Human thumb
(Cam-follower CMC joint
with 2 parts)

Important Hand Biomechanics

Effective link 3

Effective link 2

Effective link 4

Thumb of the ACT Hand
(Linkage CMC Joint with 3 parts)

Norton, Robert L. "Design of machinery: an introduction to the
synthesis and analysis of mechanisms and machines." (1992): 294.
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Human Hand Anatomy

Bones Ligaments Tendon and muscles Blood
vessel &

nerves
Important Hand Biomechanics
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The Extensor & Flexor Tendons -- The Transmission System

Palmar view

A A
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=== Flexor tendons

Dorsal view

Important Hand Biomechanics

The transmission system of human
hand

Finger straightens — pull the extensor
tendons

Finger bends — pull the flexor
tendons

Contain built-in mechanical
advantages.
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The Gliding Mechanism of The Extensor Hood

Dorsal view Lateral view

= A thin web-structure

Lateral
DIP bands

= Capable of changing shapes
during different finger
movements

PIP Central

slip

Tendon braches
; connecting to
/ intrinsic muscles

MCP

= Smartly regulating joint torques
during finger extension and
flexion motions.

Tendons of the
extensor digitorum

~ connecting to

extrinsic muscles

Important Hand Biomechanics
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The Bulging Process of The Tendon Sheaths

pp PP (N,
W ”‘)

Tendon sheaths

(The pulleys) \ "
=
\‘/
= Gor tendon

4‘/‘7

Flexor tendon sheaths Schematic showing the
bulging effect

Important Hand Biomechanics




UNIVERSITY of WASHINGTON

Summary of The Important Hand Biomechanics

—

— [ Bones
" Biological | -- Demines the basic kinematics of finger
[ (] [ tS
finger joint movemen
ger [] Joint ligaments

-- Contributing to built-in compliance and
shapes the ROM of each finger joint

. . L] Gliding mechanism of the extensor hood
|
Biomechanical - -- regulating both extension and flexion

transmission torques at finger joints
_ [ Bulging Tendon Sheaths

-- regulating flexion torques at finger joints

Important Hand Biomechanics
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Outline

Introduction
Important Hand Biomechanics

Design & Prototype
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Perspective on Broader Impacts & Future Work
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Design & Prototype

[0 Artificial joint

[ Biomimetic transmission

[0 Whole hand integration
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Design And Prototyping Process of the Artificial Joint

Joint Artificial joint
ligaments capsule

Ball joint

[—/Z"1 3D printed ABS bone

Crocheted ligaments

S Silicon rubber sleeve
Steel ring

Laser-scanned finger bone

o
Solid ABS

bone

\
------------

(Xu et. Al,, 2011)

Artificial Finger Joint
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System ldentification of The Artificial MCP Joint

[0 Two thicknesses of the silicon rubber sleeve:

l\/\"\fv V\, * Thin—|.5mm

" Thick — 2.0 mm

: [0 Effect of external weights:
'\’-f\_,\" * Unloaded
. : " Loaded — 7.5g mass

175 ms

' [0 120 manual perturbations at ~| Hz

A~ A A~ = 2 Human
I B = 4 Artificial

—— [0 Motion capture system at 480 Hz usinga 7-camera system

Artificial Finger Joint



UNIVERSITY of WASHINGTON

Modeling of The Artificial MCP Joint

0 =—k-bO+a, +a,cos(0)+a,sin(0)+cy+c, 0 +¢, 0’

accel

Where  w(7) = j tanh(&(7))dr

pos vel
Table 4.3: Comparison of stiffness & damping for the human and artificial MCP joints

MCP joint of the index  Stiffness K (Nm/rad)  Damping B (Nms/rad)
finger
j; ot ST Sty (e Sty e, S —— -
S Fi A
Human joint j 0.50 (averaged bewteen 0.0142 (SD = 0.23) I
| -0.2 to 1 radians) |
[ |
Artificial joint I 0.534 +/- 0.025 (95% 0.024 +/- 0.0003 (R? = |
| confidence interval) 0.87) I
e e o o o e o mm o o e e o o e e i /

Artificial Finger Joint
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Design of The Biomimetic Index Finger

i h TET - ] e . L Bt
Stablization around a set pose

(Xu et. Al,, 2012)

Artificial Finger Joint
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Design & Prototype

[1 Artificial joint

[0 Biomimetic transmission

[0 Whole hand integration
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Crocheted Extensor Mechanism

Lateral
DIP bands
PIP Central
slip
MCP Tendon braches

connecting to
) intrinsic muscles

Tendons of the
extensor digitorum
connecting to
extrinsic muscles

Biomimetic Transmission

Henderson and Taimina, (2001)

Compliant textile

Withstand high
tensile forces

Can be made into
any shape
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Testing The Mechanical Properties of The Crocheted
Extensor Mechanism

L

TC

I

o

$0.25

(Xu et. Al,, 2016)

Biomimetic Transmission
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Results of The Tensile Test

400
Triple
crochet
350}

bouble
500 crochet

Single /| ./
250 crochet

z

g 200}

w
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wofk  strina 7 /A7 N
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% 2 n 8 10 2

6
Displacement (mm)

Biomimetic Transmission

* |5N/mm found in the human wrist
extensor.

Table 3.1: Comparison of mechanical properties between different crocheted conditions.

Samples (n = number of the Ultimate load Linear stiffness (N/mm )?
samples) (N) Mean + SD  Mean + SD

Single string (n=3) 109.3 + 4.2 II 176 £ 46

Single crocheted chain (n=3) 249.5 +£ 9.5 |_ STTE£79 )

Double crocheted chain (n=3) 202.2 + 14.8 62.3 + 13.8

Triple crocheted chain (n=3) 440.7 4+ 150.4 61.8 4+ 20.1

Type 1-branching (n==6) 260.1 & 20.0 59.2 £ 14.0

Type 2-branching-middle (n =3) 277.4 £ 22.2 60.5 & 13.3

Type 2-branching-side (n==6) 277.6 + 15.6 56.2 4+ 10.6

2Linear stiffness values of the crocheted samples are calculated from the linear region of

the curves.

(Xu et. Al,, 2016)
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The Crocheted Extensor Hood On The ACT Hand

Step 4. Step 5.

Biomimetic Transmission
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Improved Design of The Extensor Hood & Tendon Sheaths

Dorsal view Palmar view

Biomimetic Transmission
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Design & Prototype

[1 Artificial joint
[0 Biomimetic transmission

[0 Whole hand integration
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Whole Hand Integration — Actuators

3D-printed
robotic hand <

I
|
I
I
I
(8-DOF)
| Table 7.1: The specifications of the Dynamixel servos.
I
I Dynamizel Servo Model AX-124 MX-12W
| Working voltage (V) 12 12
| No load speed (RPM) 59 470
I Gear ratio 254/1 32/1
10 Dynamixel I Resolution (°) 0.29 0.088
Hea— D, Range of Motion (°) 300 360
| Communication Speed 7343bps  1Mbps 8000 bps - 4.5 Mbps
I Weight (g) 55 54.6
| Dimensions (mm) 32 x 40 x 50 32 x 40 x 50

(Xu and Todorov, 2015)
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Whole Hand Integration — Data Glove

The string
potentiometer
unit
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Evaluation
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Evaluation
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Outline
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Perspective on Broader Impacts & Future Work
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Hand Dexterity Is A Personal Property

“Regardless of the degree of training, not all musicians are
cable of the same finger movements” (Watson, 2006)

H.-M. Schmidt and U. Lanz, Surgical anatomy of the hand. Thieme. Stuttgart, 2004.
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Robotics -- Telemanipulation

Due to the one-to-one mapping of the kinematics, the telemanipulation
process will also feature reduced cognitive load & easy programming.
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Medical Research -- Scaffolds

Important biomechanical data can be physically preserved and then used to
generate artificial scaffolds for limb regeneration research

RHCS lab, Oregon State University Ott Laboratory, Massachusetts General
Hospital / Harvard University
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Future — Artificial Limb

by Scott McNutt
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Future Work: 3-axis Fingertip Force Sensor

3D printed
Fingertip

Central steel
ball

Off-the-shelf
Force sensor

Preloading
bolt

Sensor’s

contact ball
LS
<
) F. ‘
- P
Honeywell low profile
FSS015WNSX force sensor F F
3

2

(Xu et al., 2014)




