

APPROACHING HUMAN HAND DEXTERITY THROUGH HIGHLY BIOMIMETIC DESIGN

Zhe Xu

Mechanical Engineering and Materials Science Yale University

Magician's Hand Manipulation Tricks

Magician Peter Pitchford http://www.magicbymanipulation.com/

Why Anthropomorphic Robotic Hands?

By choosing five-fingered robotic hand design, researchers want to easily transfer knowledge of dexterous hand movements from human to robot

UTAH/MIT Hand (1983)

Robonaut (1999)

i-Limb

(2001)

Shadow Hand (2004)

Keio Hand (2005)

Naist Hand

(2005)

ELU-2 Hand (2010)

DLR Hand (2011)

(2009) **BeBionic Hand**

(2012)

JHU Hand (2012)

UB Hand IV (2012)

UW Hand (2012)

Soft Hand

(2012)

Cyber Hand

(2006)

(2009)

Sandia Hand

(2013)

RBO Hand 2 (2014)

Introduction

Using Brain to Control Anthropomorphic Robotic Hands

Cortical homunculus shows how human brain sees the body from the inside

Autonomous Control of Anthropomorphic Robotic Hands

Movement Control Lab, University of Washington (Mordatch et al., 2014)

Tele-manipulation: A Practical Way to Extract Hand Dexterity from Brain

Avatar, 2009

Introduction

The Anatomically Corrected Test-Bed (ACT) Hand

Mimics:

- Bone structure
- Tendon routings
- Joint DOFs
- Muscles
 - 6 motors the fingers
 - 8 motors for thumb

W

- 4 motors for wrist

W

Important Biomechanical Features Need to Be Mimicked

W

The Conventional Mechanical Joint Used inside The ACT Hand

Typical mechanizing process

W

The Common Mechanical Analogy of The CMC Joint

The Common Mechanical Analogy of The CMC Joint

W

The Shapes Of The Bones Decide The Basic Kinematics of The Human Hand

Trapezium bone of the human thumb

Unfixed joint axes(Crisco et al., 2015)

Our Approach

Our highly biomimetic design truthfully matches kinematics of the human hand

Outline

- □ Important Hand Biomechanics
- **Design & Prototype**
- **Perspective on Broader Impacts & Future Work**

Human Hand Anatomy

Bones

Ligaments

Tendon and muscles

Blood vessel & nerves

W

Phalanges Phalanges DIP joint DIP joint MCP joint CMC joint CMC joint CMC joint

Important Hand Biomechanics

Bones

- Contains 27 bones with 8 small wrist bones
- Four fingers and one thumb
- The scaffold for the soft tissues
- Trapezium bone is crucial for thumb opposition

Someting of Wat

W

Articular Surfaces Decides Basic Kinematics and Distributes Stress Better

- The collateral joint ligaments prevent abnormal sideways bending
- The volar plate -- prevents hyperextension
- Stabilize the finger joints by forming the joint capsule
- The joint capsule shapes the ROM of the finger

Biological Joint Requires Less Parts

Important Hand Biomechanics

Norton, Robert L. "Design of machinery: an introduction to the synthesis and analysis of mechanisms and machines." (1992): 294.

Human Hand Anatomy

nerves

The Extensor & Flexor Tendons -- The Transmission System

- The transmission system of human hand
- Finger straightens pull the extensor tendons
- Finger bends pull the flexor tendons
- Contain built-in mechanical advantages.

The Gliding Mechanism of The Extensor Hood

- A thin web-structure
- Capable of changing shapes during different finger movements
- Smartly regulating joint torques during finger extension and flexion motions.

W

The Bulging Process of The Tendon Sheaths

Summary of The Important Hand Biomechanics

Outline

- **Important Hand Biomechanics**
- **Design & Prototype**
- **Perspective on Broader Impacts & Future Work**

Design & Prototype

W

- □ <u>Artificial joint</u>
- **Biomimetic transmission**
- □ Whole hand integration

Design And Prototyping Process of the Artificial Joint

Artificial Finger Joint

- 350 ms

- Two thicknesses of the silicon rubber sleeve:
 - Thin 1.5 mm
 - Thick 2.0 mm
- Effect of external weights:
 - Unloaded
 - Loaded 7.5g mass
- 120 manual perturbations at ~1 Hz
 - 2 Human
 - 4 Artificial

Motion capture system at 480 Hz using a 7-camera system

Artificial Finger Joint

Modeling of The Artificial MCP Joint

$$\ddot{\theta} = -k - b\dot{\theta} + a_0 + a_1\cos(\theta) + a_2\sin(\theta) + c_1\psi + c_2\theta^2 + c_3\dot{\theta}^2$$

Where $\psi(t) = \int \tanh(\dot{\theta}(\tau))d\tau$

Table 4.3: Comparison of stiffness & damping for the human and artificial MCP joints

MCP joint of the index finger	Stiffness K (Nm/rad)	Damping B (Nms/rad)
Human joint	0.50 (averaged bewteen -0.2 to 1 radians)	0.0142 (SD = 0.23)
Artificial joint	0.534 + - 0.025 (95%) confidence interval)	$0.024 + - 0.0003 (R^2 = 0.87)$

Artificial Finger Joint

accel

vel

W

Design of The Biomimetic Index Finger

(Xu et. Al,, 2012)

Artificial Finger Joint

Design & Prototype

□ Artificial joint

- **Biomimetic transmission**
- □ Whole hand integration

Crocheted Extensor Mechanism

Henderson and Taimina, (2001)

- Compliant textile
- Withstand high tensile forces
- Can be made into any shape

Biomimetic Transmission

Testing The Mechanical Properties of The Crocheted Extensor Mechanism

(Xu et. Al,, 2016)

Biomimetic Transmission

W

Results of The Tensile Test

• 15N/mm found in the human wrist extensor.

Table 3.1: Comparison of mechanical properties between different crocheted conditions.

Samples $(n = number of the samples)$	$\begin{array}{l} \textit{Ultimate load} \\ \textit{(N) Mean} \pm \textit{SD} \end{array}$	$\begin{array}{c} Linear \ stiffness \ (N/mm)^2 \\ Mean \ \pm \ SD \end{array}$
	ť	
Single string $(n=3)$	109.3 ± 4.2	17.6 ± 4.6
Single crocheted chain $(n=3)$	249.5 ± 9.5	57.7 ± 7.9
Double crocheted chain $(n=3)$	292.2 ± 14.8	62.3 ± 13.8
Triple crocheted chain $(n=3)$	440.7 ± 150.4	61.8 ± 20.1
Type 1-branching (n=6)	260.1 ± 20.0	59.2 ± 14.0
Type 2-branching-middle $(n = 3)$	277.4 ± 22.2	60.5 ± 13.3
Type 2-branching-side $(n=6)$	277.6 ± 15.6	56.2 ± 10.6

 $^2\mathrm{Linear}$ stiffness values of the crocheted samples are calculated from the linear region of the curves.

(Xu et. Al,, 2016)

Biomimetic Transmission

W

The Crocheted Extensor Hood On The ACT Hand

Step 4.

Step 6.

Step 3.

Biomimetic Transmission

W

Improved Design of The Extensor Hood & Tendon Sheaths

Palmar view

Biomimetic Transmission

Design & Prototype

- □ Artificial joint
- **Biomimetic transmission**
- □ Whole hand integration

Whole Hand Integration – Actuators

10 Dynamixel servos

(Xu and Todorov, 2015)

Table 7.1: The specifications of the Dynamixel servos.

Dynamixel Servo Model	AX-12A	MX-12W
Working voltage (V)	12	12
No load speed (RPM)	59	470
Gear ratio	254/1	32/1
Resolution (°)	0.29	0.088
Range of Motion (°)	300	360
Communication Speed	7343bps 1Mbps	8000 bps - 4.5 Mbps
Weight (g)	55	54.6
Dimensions (mm)	$32 \times 40 \times 50$	$32 \times 40 \times 50$

Evaluation

Evaluation

Outline

□ Introduction

- **Important Hand Biomechanics**
- **Design & Prototype**
- Perspective on Broader Impacts & Future Work

Hand Dexterity Is A Personal Property

"Regardless of the degree of training, not all musicians are cable of the same finger movements" (Watson, 2006)

H.-M. Schmidt and U. Lanz, Surgical anatomy of the hand. Thieme. Stuttgart, 2004.

Robotics -- Telemanipulation

Due to the one-to-one mapping of the kinematics, the telemanipulation process will also feature reduced cognitive load & easy programming.

Medical Research -- Scaffolds

Important biomechanical data can be physically preserved and then used to generate artificial scaffolds for limb regeneration research

RHCS lab, Oregon State University

Ott Laboratory, Massachusetts General Hospital / Harvard University

Future – Artificial Limb

Future Work: 3-axis Fingertip Force Sensor

W

(Xu et al., 2014)