New condition for tofu stable grasping with fluid fingertips

Toshihiro NISHIMURA, Yoshinori FUJIHIRA, Member, IEEE, Ryota ADACHI and Tetsuyou WATANABE, Member, IEEE

Abstract—Tofu shows the following compression behavior. First, the behavior is non-linear; subsequently, the behavior becomes elastic/linear, followed by yielding and fracture. A linear behavior indicates that there is no fracture, but further increase of compression can cause yielding or fracture. The compression in the region of linear behavior then can be regarded as maximum. With this in mind, this paper presented a grasping condition of controlling the amount of compression so that the compression behavior can be linear. This condition is applied to the previously proposed fluid fingertip that utilizes a rubber bag filled with a viscoelastic fluid and having a rigid layer inside the fluid. In addition, this paper presents a methodology for checking whether the grasping condition is held, based on our previously developed phase change detection method of comparing the fitting accuracies of different approximation models. Additionally, this paper presents the reason behind the behavioral change of fluid pressure. Before phase change, the fluid fingertip behaves like a rigid fingertip, while after phase change, the contact pressure is transmitted to the fluid pressure and can be observed by the fluid pressure. The validity of the approach was shown through experiments.

I. INTRODUCTION

Robotic systems that can work in a human environment are required. Robotic hands play an important role as end-effectors for such robotic systems, and many types of robotic hands have been developed [1]–[16]. In a human environment, a collision between humans and robots cannot be avoided, and thus, the surfaces of robots should be soft. With this in mind, we previously developed a robotic hand with a soft surface by filling a rubber bag with a viscoelastic fluid and having a rigid layer inside the fluid. In addition, this paper presents a methodology for checking whether the grasping condition is held, based on our previously developed phase change detection method of comparing the fitting accuracies of different approximation models. Additionally, this paper presents the reason behind the behavioral change of fluid pressure. Before phase change, the fluid fingertip behaves like a rigid fingertip, while after phase change, the contact pressure is transmitted to the fluid pressure and can be observed by the fluid pressure. The validity of the approach was shown through experiments.

First, the behavior is non-linear; subsequently, the behavior becomes elastic/linear, followed by yielding and fracture. A linear behavior indicates that there is no fracture, but further increase of compression can cause yielding or fracture. The compression in the region of linear behavior then can be regarded as maximum. With this in mind, this paper presented a grasping condition of controlling the amount of compression so that the compression behavior can be linear. This condition is applied to the previously proposed fluid fingertip that utilizes a rubber bag filled with a viscoelastic fluid and having a rigid layer inside the fluid. In addition, this paper presents a methodology for checking whether the grasping condition is held, based on our previously developed phase change detection method of comparing the fitting accuracies of different approximation models. Additionally, this paper presents the reason behind the behavioral change of fluid pressure. Before phase change, the fluid fingertip behaves like a rigid fingertip, while after phase change, the contact pressure is transmitted to the fluid pressure and can be observed by the fluid pressure. The validity of the approach was shown through experiments.

I. INTRODUCTION

Robotic systems that can work in a human environment are required. Robotic hands play an important role as end-effectors for such robotic systems, and many types of robotic hands have been developed [1]–[16]. In a human environment, a collision between humans and robots cannot be avoided, and thus, the surfaces of robots should be soft. With this in mind, we previously developed a robotic hand with a soft surface by filling a rubber bag with a viscoelastic fluid and having a rigid layer inside the fluid. In addition, this paper presents a methodology for checking whether the grasping condition is held, based on our previously developed phase change detection method of comparing the fitting accuracies of different approximation models. Additionally, this paper presents the reason behind the behavioral change of fluid pressure. Before phase change, the fluid fingertip behaves like a rigid fingertip, while after phase change, the contact pressure is transmitted to the fluid pressure and can be observed by the fluid pressure. The validity of the approach was shown through experiments.

Next subsection provides related works. Section 2 presents the

*Research supported by NSK Advanced Mechatronics Foundation and JSPS KAKENHI Grant Number 16H04298.

T. Nishimura and R. Adachi are with the Graduated school of Natural science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192 Japan (e-mail: to.nishimura@stu.kanazawa-u.ac.jp). Y. Fujihira is with the Muroran Institute of Technology (e-mail: yfuji@mmm.muroran-it.ac.jp). T. Watanabe is with the Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 9201192 Japan (e-mail: te-watanabe@ieee.org).
basic concept of grasping conditions and applicable objects. Section 3 presents the methodology for detecting whether the grasping condition can be held. Section 4 presents the experimental results for observing the working of the grasping condition.

A. Related works

Anthropoid robotic hands have been developed in consideration of human affinity [4]–[10]. Normally, the surface of a finger is rigid at factories and not suitable for adaptation to human environment. Simoga and Goldenberg claimed that gel is effective for constructing the surfaces of fingertips because it can reduce contact impact and strain energy, and fit according to the shape of the object [17]. In addition to these advantages, we observed other benefits in our previous studies, i.e., a uniform contact pressure distribution and an automatic stiffness increase [1], [2]. The main drawback of using gel for fingertips is the limitation on the maximum applicable forces. Thus, a two-layer structure where a rigid component was installed inside the gel was presented in[1], [2].

To fit the target object is key for obtaining universal grasping (a wide variety of objects can be grasped by one robotic hand). A pioneer work in this regard might be the snake like gripper presented by Hirose and Umetani [11]. Kim and Song developed a gripper that included hybrid variable stiffness actuators [12]. The actuators could control contact stiffness. Brown et al. [13] developed a universal gripper for grasping objects having a wide variety of shapes. It was based on the jamming phenomenon [18], [19]. Choi and Koc developed a design of inflatable rubber pockets on the gripping sides [14] for the same purpose of grasping objects having a wide variety of shapes. Pettersson et al. utilized magnetorheological (MR) fluid for constructing a gripper that can fit to the shape of the object and provide a space for confining objects [15]. The space was formed by molding the MR fluid. Kim et al. [16] presented a soft skin for safe interaction between children and robots. The research showed that a robotic hand with soft skin could grasp several objects, including a plastic cup and a roll of paper. In the above studies, several fragile objects, including eggs and fruits, were successfully grasped. However, studies on grasping soft and fragile objects, such as tofu, are still limited.

The next step in enhancing the function of robotic hands from the viewpoint of universal grasping would be to grasp soft and fragile objects. Thus, this paper focuses on grasping soft and fragile objects, and presents a grasping strategy for such objects.

II. BASIC CONCEPT FOR GRASPING CONDITION AND APPLICABLE OBJECTS

Soft (Kinugoshi) tofu, which is a typical example of a fragile and soft object in a human environment, was used as the target object. In order to observe the compression behavior of tofu, a compression test was conducted. Fig. 1 shows the experimental setup. An indenter was attached to an automatic poisoning stage. The tofu (Topvalue, Silken tofu, size: $25 \times 25 \times 30$ [mm$^3$]) was pushed against a duralumin plate at a low speed of 1.0 [mm/s] to minimize the influence of speed.

![Experimental setup for compression test of soft (Kinugoshi) tofu](image1.png)

**Figure 1.** Experimental setup for compression test of soft (Kinugoshi) tofu

![Results of compression test; pushing distance x [mm] versus compression force](image2.png)

**Figure 2.** Results of compression test; pushing distance x [mm] versus compression force

Fig. 2 shows the result of the compression test. At first, the tofu showed a curve behavior; subsequently, a linear behavior was observed with the increase of pushing distance, followed by yielding and fracture. The curve behavior is considered to be due to the increase of density. The increase of density in tofu corresponds to consolidation [20] which is a process of decrease in volume with the decrease of water inside the object (tofu). Consolidation indicates the increase in filling rate of the solid part. An evidence that supports this assumption is the existence of water around the tofu after the compression test. The process of increase of density is non-linear. Therefore, linear behavior is not considered as the process, i.e., the increase of density stops in the region of linear behavior. Linear behavior is helpful for grasping because it indicates that the contact can be modeled using a linear spring, and compliance control can be obtained. The force applied by the robot/finger can be transmitted to the tofu without any loss in the region of linear behavior. In addition, it should be noted that linear behavior is observed before yielding and subsequent fracture. Forces in the region can be regarded as maximum applicable grasping forces without fracture. Hence, if stable grasping of tofu cannot be realized in the region of linear behavior, tofu cannot be grasped without fracture. Grasping when the compression behavior is linear is then the proposed grasping condition. Then, the only problem that remains to be solved is detecting the region of linear behavior. It should be noted that frictional and equilibrium conditions (balancing of object weight) are additionally required for realizing grasping [21]. If the weight of an object is small, it is expected that these conditions can be satisfied because of the large grasping force in the region of linear behavior.
Although the target object is tofu, the grasping strategy can be applied to all objects whose compression behavior is qualitatively similar to tofu (i.e., linear behavior after non-linear behavior). It should be noted that the presented condition does not depend on size or weight of objects because it is associated with not gravity compensation but fracture/yielding avoidance.

III. METHODOLOGY FOR DETECTING WHETHER GRASPING CONDITION CAN BE HELD

A. Fluid fingertips

We developed deformable fingertips having a two-layer structure, i.e., a fluid layer and a rigid layer. Fragile objects can be handled using the fluid layer, and normal rigid objects can be handled using the rigid layer [1], [2]. For realizing universal grasping, we will try to grasp tofu with the fingertips. Because this study focuses on grasping soft and fragile objects (tofu), we will consider only the fluid layer. For this purpose, we constructed deformable fingertips by using a rubber bag filled with a viscoelastic fluid, as shown in Fig. 3. The structure, sensors, and materials are similar to those used to fabricate the fluid fingertip in our previous study [3].

B. Overview of methodology

The area where the grasping condition can be held corresponds to the area where the compression behavior of the object is linear. An overview of the methodology for detecting the area is presented below.

Step 1. Detect the point where the fluid pressure inside the fingertip corresponds to the contact pressure of the object. After detecting the point, the contact pressure of the object can be observed via the fluid pressure.

Step 2. Detect points where the compression behavior is linear through the fluid pressure.

As described later, at the first stage of compressing the tofu, the fluid pressure does not correspond to the contact pressure of the object, and we cannot observe the state of tofu via the fluid pressure. This is the reason why step 1 is conducted before step 2.

The detection method is based on the phase change detection method [3] of comparing the fitting accuracies of different approximation models.
D. Step 1: detection of the point where the fluid pressure inside the fingertips becomes to correspond to the contact pressure of the object

As shown in Fig. 5, if the pushing distance $x$ is small, the value of the fluid pressure does not change significantly. Here, we focused on the interaction between the fluid fingertip and the tofu, and defined two phases, as shown in Fig. 6. At phase 1, the fluid fingertip does not deform while the object deforms. The fluid fingertip behaves like a rigid fingertip. Phase 1 can be observed when the pushing distance $x$ is small. If the pushing distance $x$ is increased, phase 2 can be observed. At phase 2, both the fluid fingertip and object deform; this phenomenon is called phase change. Note that here, only two phases were used for explanation, but there could be more than two phases. In that case, there could be more than one phase change.

Here, we constructed a simple model for describing the phenomenon (Fig. 7). For easy understanding, a spring model was used, and viscosity was neglected (because of the low speed of the test). Let $k_1$ and $k_2$ be the stiffnesses of the fingertip and the object, respectively; $x_1$ and $x_2$ denote the displacements of the fingertip and the object, $f_{\text{object} \rightarrow \text{fingertip}}$ be the force applied to the fingertip by the object, and $f_{\text{fingertip} \rightarrow \text{object}}$ be the force applied to the object by the fingertip. Then, we obtain

$$f_{\text{object} \rightarrow \text{fingertip}} = k_1(x_1 - x_2) \quad (1)$$

$$f_{\text{fingertip} \rightarrow \text{object}} = k_2 x_2 \quad (2)$$

From $f_{\text{object} \rightarrow \text{fingertip}} = f_{\text{fingertip} \rightarrow \text{object}}$, we have

$$x_1 = \left(1 + \frac{k_2}{k_1}\right) x_2 \quad (3)$$

It should be noted that $k_1$ and $k_2$ changes with the change in displacements $x_1$ and $x_2$, as shown in Figs. 2, 5. Here, we suppose the case when the stiffness of the fluid fingertip is greater than that of the object initially (when there is no contact). In this case, $k_1 \gg k_2$. Then, (3) becomes

$$x_1 = \left(1 + \frac{k_2}{k_1}\right) x_2 \approx x_2 \quad (4)$$

It indicates that the fingertip displacement $x_1$ corresponds to the deformation of the tofu $x_2$, i.e., there is no deformation in the fingertip, and the fingertip behaves like a rigid fingertip. This state corresponds to phase 1. We observed the captured image at phase 1, and found that there was no deformation of the fingertip at phase 1 (Note that only visible parts were examined), as shown in Fig. 6. A slight increase in fluid pressure (see Fig. 5) is also an evidence. It should be noted that at phase 1, the fluid pressure does not correspond to the contact pressure of the object. Therefore, the fluid pressure cannot be used for observing the contact pressure at phase 1.

At phase 2, the deformation of the fingertip was observed, as shown in Fig. 6, although the deformation was small. Thus, the contact pressure can be observed via the fluid pressure at the fingertip in phase 2.

In order to verify it, we conducted experiments where a fluid fingertip was used instead of the tofu, as shown in Fig. 8. A direct measurement of the internal pressure of the tofu was not possible; thus, we conducted this experiment to simulate the pushing of tofu by the fluid fingertip. For the simulation, the fluid fingertip having an initial fluid pressure of 4.0 [kPa] was pushed by the fluid fingertip having an initial fluid pressure of 6.0 [kPa]. Fig. 9 shows the results of the experiment; the behavior of fluid pressure of the fingertip with an initial fluid pressure of 6.0 [kPa] was very close to the case when the tofu was pushed, as shown in Fig. 5. At first, the fluid pressure of the fluid fingertip with an initial fluid pressure of 4.0 [kPa] increased. When the pushing distance was increased, phase change occurred, and the fluid pressure of both the fingertips increased. The value of fluid pressure for both the fingertips became similar. Phase 2 corresponds to the state where the fluid pressure of both the fingertips increased, while phase 1 corresponds to the state when the fluid pressure of the fluid fingertip with a larger initial fluid pressure of 6.0 [kPa] did not increase. It should be noted that phase change was detected by checking whether $\Delta \text{RMSE}_{\text{poly}2-\text{poly}3}$ exceeded the threshold value (more detail will be described later). Although the structure of the fluid fingertip was different from that of the tofu, the results support the findings; the fluid fingertip behaves like a rigid fingertip at phase 1, while the contact pressure can be transmitted to the fluid and can be observed via the fluid pressure at phase 2. Therefore, in order to detect the area where the presented grasping condition can be held via fluid pressure, we need to stay at phase 2. Hence, as a first step, we need to detect (first) phase change (Recall that there could be more than one phase change).

The methodology is based on our previous one [3], which compared the fitting accuracies of different approximation
models. Simple and complex fitting models were prepared for the approximation. For easy understanding, two- and three-dimensional polynomial functions were assumed to represent simple and complex fitting models, respectively. The regression started from the point where the pushing distance \( x \) was 0.1 [mm] (the number of data points was 10). Regression was performed each time new data were available, and the root mean squared error (RMSE) was calculated for each model. Let \( \text{RMSE}_{\text{poly2}} \) and \( \text{RMSE}_{\text{poly3}} \) be the RMSE for two- (simple) and three-dimensional (complex) polynomial functions. Then, the RMSE difference was computed as follows:

\[
\Delta \text{RMSE}_{\text{poly2} - \text{poly3}} = \text{RMSE}_{\text{poly2}} - \text{RMSE}_{\text{poly3}} \quad (5)
\]

Fig. 11 shows the calculated \( \Delta \text{RMSE}_{\text{poly2} - \text{poly3}} \) for detecting the first phase change for the data shown in Fig. 5. It can be seen that phase change was successfully detected. It should be noted that when the number of data is small, RMSE does not work well. We then ignored cases when \( \text{R}^2 < 0.9 \) (\( \text{R} \) is coefficient of determination), which corresponds to the case when the pushing distance \( x \) was close to zero.

E. Step2: Detect the points where compression behavior is linear.

Suppose the number of data is increased in increments of one when conducting linear regression. The keys for detecting linear/elastic behavior are determining a method to continuously obtain the same slope of the regression line, and appropriate setting of the starting point for regression.

A one-dimensional polynomial function was prepared for regression. Regression was performed each time new data were available, and the coefficient of determination (\( \text{R}^2 \)) and the slope (\( a \) of \( P = ax + b \)) of the regression line were derived. The coefficient of determination (\( \text{R}^2 \)) and the deviation of the slope were evaluated. The deviation of the slope (\( a_d \)) was determined using

\[
a_d(x_k) = \frac{1}{10} \sum_{i=1}^{10} \frac{a(x_{k-i}) - a(x_k)}{a(x_k)} \quad (6)
\]

where \( x_k \) is the \( k \)th point of \( x \) and \( a_d(x_k) \) is the \( a_d \) at \( x_k \). If the deviation of the slope (\( a_d \)) was less than the threshold value (0.92), and the coefficient of determination (\( \text{R}^2 \)) exceeded the threshold value (0.9), we judged that the data arrangement showed a linear/elastic behavior.

For setting the starting point for regression, we used the phase change detection method. We subsequently checked phase change after the first phase change was detected, and the data were split into several phases. Linear regression was applied to split phases. The point just after phase change was set as the starting point for regression. Phase change indicates the change of the fitting model. Therefore, this strategy was suitable for detecting linear behavior.

Table 1 shows the points where linear behavior was observed, and grasping condition was satisfied. Recall that the compression test was conducted three times for each condition. Small deviations showed the stability of the proposed detection methodology. The points are also shown in Fig. 5, where it can be seen that the detection method worked well. Fig. 12 summarizes the procedure for detecting points where linear behavior was observed, and grasping condition was satisfied.

<table>
<thead>
<tr>
<th>Initial fluid pressure [kPa]</th>
<th>1.5</th>
<th>2.7</th>
<th>4.0</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>The (grasping) points ( x_g ) [mm]</td>
<td>11.6</td>
<td>13.8</td>
<td>12.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Standard deviation of ( x_g ) [mm]</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>
IV. EXPERIMENTAL CONFIRMATION OF HOW THE PROPOSED GRASPING CONDITION WORKED

In order to observe how the proposed grasping strategy works, we conducted experiments for grasping a tofu. The experimental setup is shown in Fig. 4. The procedure of performing the experiments is shown in Fig. 13. The dimensions and weight (22.7 [g]) of all the tofus were same. The fluid fingertip was pushed against the tofu at a speed of 1.0 mm/s. We stopped when the pushing distance was \( x_1 = 4, 6, 8, 10, 12, \) and 14 [mm], and the Z-axis of the stage on which the tofu was placed was moved in the lower direction for grasping. After checking whether the tofu was grasped (fell down), a disturbing force was exerted in the direction of gravitational force manually, in order to observe the stability of grasping. If the tofu did not fall down, the grasping was judged to be stable. If the tofu fell down, the grasping was judged to be unstable. The manual disturbance was not quantitative. Then, we measured the amplitude of fluid pressure in the fingertip when the disturbing force was applied, as shown in Fig. 14. Table 2 lists the measured mean amplitude for each condition. The magnitude of the disturbing force when the grasping was stable was lower than or equal to that when the grasping was unstable, except for one or two cases. Thus, it can be concluded that the evaluation/judgment was valid. The initial fluid pressure in the fingertip (when there is no contact) was set as 1.5, 2.7, 4.0, and 6.0 [kPa]. The experiments were conducted three times for each condition.

Table 2 summarizes the results of the experiment. It can be seen that if the pushing distance during the experiment (\( x_1 \)) is larger than the pushing distance at the point where the compression behavior becomes linear (Table 1), the grasping was successful for each case and the grasping was stable. It indicates that the proposed grasping condition is valid. It should be noted that the proposed condition is not a necessary condition, but a sufficient and conservative condition. Linear behavior is observed before yielding, and corresponds to the case when a relatively large grasping force is applied to the object. If the weight of an object is small, the magnitudes of the grasping force is sufficient to satisfy frictional and equilibrium conditions. In this case, grasping is guaranteed to succeed if only the proposed condition is satisfied. This is the reason why grasping succeeded for each case listed in Table 2. If the proposed condition is not satisfied, it cannot be confirmed whether grasping was successful (therefore, there could be cases when grasping succeeded even if the proposed condition is not satisfied).

V. CONCLUSION

This paper presented a novel condition for grasping objects whose compression behavior is qualitatively similar to that of tofu. We applied the condition to the fluid fingertip that utilizes a rubber bag filled with a viscoelastic fluid [1]–[3]. The compression behavior of tofu shows the following trend: at first, the behavior is non-linear, followed by linear behavior. Finally, yielding and fracture occurs. The grasping condition is to control the amount of compression so that the compression behavior can be elastic/linear. When the grasping condition is satisfied, it indicates that there is no fracture, and the contact between the fluid fingertips and the object can be modeled using a linear spring, and contact force by the fingertip can be transmitted without any loss. Therefore, stable grasping can be easily obtained (by a simple controller). Contact pressure can be observed through the fluid pressure of the fingertips (because linear behavior is observed in phase 2, as shown in Figs. 7 and 10). Linear behavior is observed before yielding, and corresponds to the case when the grasping force is relatively large. Thus, if the weight of an object small, the grasping force is sufficient to satisfy
This paper also presented a methodology for detecting whether the proposed grasping condition was satisfied. The methodology was based on the phase change detection method [3] of comparing the fitting accuracies of different approximation models. Phase change indicates the change of fitting/approximation model. By using the phase change detection method, the starting point of each phase was detected. By applying linear regression to the data from the obtained starting point, we determined the points where the slope of the regression line was constant under the condition of good fitting accuracy. The obtained points correspond to points where the compression behavior is linear.

We also presented the reason behind (first) phase change, which was unclear in the previous study [3]. In the phase just before phase change, there was a slight increase in fluid pressure, and the fingertip behaves like a rigid fingertip. In the phase after phase change, the internal pressure of the object (contact pressure) is transmitted to the fluid pressure, and the contact pressure can be observed through the fluid pressure. The linear behavior of compression suggests the possibility of construction of a controller for (tofu) manipulation. This will be discussed in a future study.

REFERENCES


