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1. Introduction 

1.1 Background 
Needle insertion, a fundamental medical technique for 

puncturing the human body, is an essential skill that must 

be mastered. Needle insertion is performed on various 

sites and tissues, including blood vessels such as veins 

and arteries, organs such as the liver, intestines, breasts, 

brain, and prostate, and cavities such as the epidural and 

pericardial spaces. Additionally, its applications are 

diverse, ranging from biopsy and treatment to drainage 

of accumulated fluids, making it a crucial procedure in 

many medical interventions. One of the most common 

needle insertion procedures is venipuncture for blood 

sampling from the arm's veins, which often relies on the 

operator's tactile sensation. Consequently, in cases where 

the blood vessel's diameter is narrow, the vessel wall has 

low elasticity, or the vessel wall is calcified and hardened, 

the needle tip may fail to reach the vessel lumen. 

Complications of venipuncture include nerve damage, 

vasovagal reactions, infections, subcutaneous 

hematomas, and allergies, with fatalities being rare. 

However, in procedures that involve needle insertion into 

the body's central regions, such as central venous catheter 

(CVC) placement or pericardiocentesis, despite using 

imaging guidance like X-rays or ultrasound, the mortality 

rate can be high. Complications associated with CVC 

include infections, thrombosis, and mechanical 

complications. Atypical mechanical complications 

include arterial puncture, pneumothorax, hematoma, and 

hemothorax, with an incidence rate of up to 19% [1]. 

Pericardiocentesis complications encompass 

pneumothorax, damage to surrounding vital organs, 

cardiac wall puncture, and death. Before the advent of 

echocardiographic guidance, pericardiocentesis 

primarily relied on a blind approach, with a life-

threatening complication rate exceeding 20% and a 

mortality rate of approximately 6% [2]. Currently, with 

the widespread use of echocardiographic guidance, the 

complication rate for pericardiocentesis has decreased to 

5%, and the mortality rate has dropped to 1%. However, 

understanding ultrasound images requires specialized 

knowledge and experience, and it may be challenging to 

visualize in obese patients. Additionally, while 18-gauge 

needles were traditionally used for pericardiocentesis, 

the current trend is to use thinner 21G needles [3]. The 

21G needle has probrems that are more prone to bending 

and breaking. The causes of complications during needle 

insertion can be attributed to various factors, including 

the operator's mental state, mechanical factors such as 

needle targeting errors (needle misplacement), infections, 

thrombosis, and others. Targeting errors, a mechanical 

factor, are a crucial factor that significantly impacts 

treatment efficacy and diagnostic accuracy. Targeting 

errors have been shown to arise from limitations in 

imaging, image misalignment, target uncertainty, human 

errors, target displacement due to tissue deformation, and 

needle deflection [4-7]. To mitigate targeting errors, 

extensive research has been conducted on automating 

needle insertion using robotic systems. 

Needle insertion robots often employ MRI, CT, or 

ultrasound imaging to guide the needle toward the target 

[8-11]. However, image-guided needle targeting is 

difficult in obese patients and in cases with hardened 

tissue due to calcification, as halation may obscure the 

target or prevent tracking of the needle tip. During blind 

needle insertion, physicians typically hold the base of the 

needle and rely on the force feedback perceived by their 

fingers to estimate the needle's deflection and perform 

targeting. Therefore, we propose a method that generates 

needle trajectories and controls the needle based on force 

feedback, similar to how physicians manipulate needles 

during blind insertions. In this proposed method, MRI, 

CT, and ultrasound imaging are utilized as 

supplementary aids to improve insertion accuracy by 

tracking the target. 

Therefore, given the high incidence of severe 

complications and the challenging nature of needle 

targeting due to respiratory motion in pericardiocentesis, 

our last goal was set to develop an robotic needle 

insertion system that used force feedback for needle 

control for pericardiocentesis. Our initial objective is to 

estimate the needle tip position using force feedback and 

propose a robust needle control method against external 

forces during insertion. Leveraging force feedback for 

needle tip position estimation and control can also serve 

as a training tool for needle insertion procedures. 

Additionally, it offers a wide range of applications, such 

as quantitatively evaluating the differences between 

experienced and inexperienced operators, integrating 

augmented reality (AR) to provide guidance during 

human-performed insertions, and supporting other 

potential applications. By utilizing force feedback, our 



 

approach not only addresses the challenges of needle 

targeting but also presents opportunities for training, 

assessment, and assistive technologies in the field of 

needle-based interventions. 

1.2 Proposal of Needle Control Method to 

Decrease Needle Deflection 
The proposed method for reducing needle deflection is 

shown in Figure 1. This research is divided into two 

sections. The first section aims to estimate the vector of 

the needle deflection caused by external forces using 

artificial intelligence. Here we explain the needle 

deflection vector. When observing from the needle base 

to the needle tip, if the needle tip was bent away from the 

needle's long axis, as shown in Figure 2, the needle tip 

can be represented on a two-dimensional plane with the 

needle's axis as the origin [12]. In this study, we refer to 

the vector from the origin of this plane to the needle tip 

as the needle deflection vector. The needle deflection 

vector can be calculated using the following equation,  

 

�⃗�𝐵 = �⃗�𝑇 − �⃗�𝑅 ······················· (1) 

 

Where �⃗�𝐵  is the needle deflection vector, �⃗�𝑇  is the 

position vector of the needle tip measured using a 3D 

position tracking system, and �⃗�𝑅 is the projection vector 

of �⃗�𝑇  relative to the vector between the needle base 

starting position and the target position. 

The input for the first artificial intelligence (AI 1) 

includes the forces acting around the needle base, the 

position of the needle base, and et al. The output consists 

of the estimation of the needle deflection vector at the 

current time. Regarding Section 1, in our previous report, 

we elucidated whether it is possible to estimate the 

needle deflection vector using artificial intelligence[13]. 

The second section aims to determine whether a needle 

base position can be derived using a artificial intelligence 

to reduce the needle deflection. In this research, we 

employed a Long Short-Term Memory (LSTM) model. 

LSTM is a type of recurrent neural network (RNN) 

architecture, designed to overcome the limitations of 

traditional RNNs in capturing long-term dependencies in 

sequential data. In an LSTM network, there are special 

units, known as memory cells, which are capable of 

maintaining information over long periods of time. The 

memory units of LSTM networks resemble the way 

humans store and recall memories when learning 

behaviors, which led us to hypothesize that they could be 

effective for our current objective. An LSTM is made up 

of 3 gates, Input Gate, Forget Gate, Output Gate. The 

equations for an LSTM block are shown as follows: 

 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) ········· (2) 

 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)·········· (3) 

 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ········ (4) 

 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) ··· (5) 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 ············ (6) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) ················· (7) 

 

where 𝑓𝑡 is the forget gate, 𝑖𝑡 is the input gate, 𝑜𝑡 is 

the output gate, �̃�𝑡 is the candidate for cell state at 

timestamp 𝑡, 𝐶𝑡 is the cell state at 𝑡, 𝜎 is the sigmoid 

function, 𝑊𝑥 is the weight for the respective gate(𝑥) 

neurons, ℎ𝑡−1 is the output of the previous lstm block, 

𝑥𝑡 is the input at current 𝑡, 𝑏𝐶  is the biases for the 
respective gates(𝑥), ℎ𝑡  is the output of the current 
lstm block. 

The input, 𝑥𝑡 for the second artificial intelligence (AI 

2) includes the forces and torques acting around the 

needle base, the insertion depths of the needle tip and the 

inversion of the needle deflection vector estimated by AI 

1. The output, ℎ𝑡 consists of the estimated position of 

the needle base to reduce the needle deflection at the 

current timestamp. 

In this report, before proposing a method to estimate 

the needle base position that reduces the needle 

deflection vector in the second section, we must first 

clarify whether it is possible to estimate the needle base 

position that generates the current needle deflection 

vector using machine learning, and then report on the 

accuracy of the method. 

 

Fig.1 Schematic diagram of needle control method to 

reduce needle deflection. 

 

Fig.2 Needle deflection vector. 

 



 

2. Experiment 

2.1 Experimental Equipment and Conditions 
The experimental equipment was shown in Figure 3. 

This experimental setup was used get the traning data for 

LSTM model. The 6-axis force sensor used to measure 

𝐹𝑥,𝑦,𝑧 and 𝜏𝑥,𝑦,𝑧 was set near the base of the needle. The 

needle used was a 21G type needle usually used for 

percutaneous transhepatic cholangiography drainage. 

The needle tip and needle base positions were measured 

using a magnetic type 3D position tracking system 

(AURORA SYSTEM, NDI). 6-degree-of-freedom 

(DOF) type and 5DOF type position sensors were used. 

In a previous research, the needle insertion phantom was 

made using materials such as gelatin gel, PVA, silicone 

rubber, and so on [13]. We decided to use gelatin for the 

phantom in this experiment because it is inexpensive and 

it is easy to adjust its hardness. A gelatin phantom with a 

concentration of 15% was used for this experiment. 

During the needle insertion into the phantom,  an 

external force was manually applied to the top face of the 

phantom. The dataset was obtained by inserting the 

needle into six points on the phantom surface 

perpendicular to the area where the external force was 

applied as shown in Figure 3. The black dots in Figure 3 

represents the needle insertion points for training data set, 

whereas the red dot represents the needle insertion point 

for the test data ( 𝑦 = 40 𝑚𝑚 , 𝑧 = 15 𝑚𝑚 ). The 

validation data used during the training of the LSTM 

model was collected from the coordinates 𝑦 = 10 𝑚𝑚, 

𝑧 = 5.0 𝑚𝑚.  

The experimental procedure was as follows: 

1) The needle was set in front of the insertion surface 

of the phantom. 

2) The needle was inserted into the phantom along the 

needle axial direction until a certain insertion depth 

𝐿1. 

3) The needle base was moved downwards for a 

distance of vector ℎ⃗⃗. 

4) The needle was moved along the needle axial 

direction until a certain insertion depth 𝐿2. 

5) The current phantom is then replaced by a new one 

and the experiment is repeated again from step 1 for 

all the values of 𝐿1 and ℎ⃗⃗. 

The deflection vector of the needle tip �⃗�𝐵  was 

calculated by measuring the needle tip position and the 

needle base position. In this experiment, 𝐿1, 𝐿2 and ℎ⃗⃗ 

were calculated using a motor encoder. Throughout the 

experiment, 𝐿2 was kept at a constant value of 50 mm. 

𝐿1 and ℎ⃗⃗ were each divided into three discreet values. 

𝐿1  values included 10 mm, 30 mm, 50 mm, while ℎ⃗⃗ 

values included 5 mm, 10 mm, 15 mm. Given that there 

are 6 puncture sites on the gelatin and each puncture site 

has 9 conditions each, a total of fifty-four training data 

were collected. The root mean squared error (RMSE) 

was used for evaluating the accuracy of the estimated 

results. 

As explained in section 1.2, the input to the LSTM 

model 𝑥𝑡  includes the forces 𝐹𝑥,𝑦,𝑧(𝑡)  and torques 

𝜏𝑥,𝑦,𝑧(𝑡) around the needle base, the insertion depth of 

the needle 𝐿1 and the needle tip deflection vector �⃗�𝐵.  

The output of this LSTM model was set as the needle 

base vector ℎ(𝑡) . The hyperparameters of the LSTM 

model were tuned automatically using Optuna (Preferred 

Networks), an open-source automatic hyperparameter 

optimization framework. 

Fig.3 Experimental equipment 

 

2.2 Results 
The time-series data results estimating the position of 

the needle base are shown in Figures 4 and 5. Figure 4 

shows the Y-axis component, and Figure 5 shows the Z-

axis component. The orange line represents the estimated 

values, the blue line represents the actual measured 

values, and the green line represents the error values 

obtained by subtracting the measured values from the 

estimated values. From Figure 4, the mean error for the 

Y-axis component was 0.14±0.20 mm. The error value 

in the Y-axis component increased when the needle base 

is stationary, as seen from the time range 20 s to 30s. 

From Figure 5, the mean error for the Z-axis component 

was -0.45 ± 1.20 mm. When the needle base was 

stationary, the error in the Z-axis component was close to 

zero, as seen from the time range 20 s to 30 s. The overall 

root mean squared error (RMSE) of the results was 0.92 

mm. 

 

Fig.4 Prediction result (Y axis) 



 

 

Fig.5 Prediction result (Z axis) 

 

3. Discussion 
When the needle base position was moved in the Z-

axis direction, the error in the estimation results for the 

Z-axis component of the needle base position increased. 

One possible cause for this is that the movement of the 

needle base in the Z-axis direction caused the needle to 

bend, resulting in non-linear changes in torque at the base 

of the needle. In our method, the position of the needle 

base needs to be controlled based on the estimation 

results of the needle deflection. However, if the error is 

large, as observed in the present results, it becomes 

difficult to sufficiently reduce the needle deflection, and 

the needle tip may not reach the target. Therefore, 

improving the estimation accuracy when the needle base 

is moved in the Z-axis direction is an important element 

in this research. In recent years, ensemble learning has 

been extensively studied, but in the present research, we 

believe that the data used to train the AI needs to be 

divided into smaller tasks. For example, with and without 

external forces, the needle base is moved in each axis (X, 

Y, Z) direction, and different AIs can be trained for each 

condition, which can then be merged to create an 

integrated AI. Another reason for the low estimation 

accuracy is that feature selection was not fully 

implemented in this study. The features provided to the 

AI are an important factor that affects the estimation 

accuracy, so it will be necessary to examine the features 

in the future. 

 

4. Conclusion 
The ultimate goal of this research is to develop a robot 

that can automate pericardiocentesis, and in this report, 

we verified whether it is possible to estimate the position 

of the needle base that can reduce needle deflection based 

on force information. As a result of the experiments, a 

problem arose where the estimation accuracy decreased 

when the position of the needle base was moved. In the 

future, we plan to consider ensemble learning and other 

estimation methods to improve the estimation accuracy. 
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