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Abstract—In this paper, we propose a joint movement trans-
mission system using FES based on a parallel-type discrimination
structure for electromyography (EMG) signals to support effec-
tive rehabilitation. In experiments, we conducted the intervention
using the proposed system and quantitatively evaluated the
effect of functional reconstruction. The results showed that the
proposed system improved motor function and reduced joint
pain and muscle tension, suggesting that it may be an effective
rehabilitation system for paralyzed patients.

Index Terms—functional electrical stimulation, motion estima-
tion, neural networks, AI-based rehabilitation system

I. INTRODUCTION

Various rehabilitation programs have been provided to
stroke patients to reconstruct the upper limb functions re-
quired to return to daily life and social activities. However,
the provision of verbal or manual guidance by therapists
is challenging, underscoring the necessity for objective and
quantitative assessment and intervention strategies [1].

To solve these problems, rehabilitation using robots and
functional electrical stimulation (FES) has been proposed [1].
In rehabilitation using FES, peripheral nerves are electrically
stimulated to induce muscle contraction and patient movement.
In addition, we proposed a human-to-human joint motion
transmission system using FES and electromyography (EMG)
signals [2]. This system supports rehabilitation by intuitively
communicating and teaching the joint motion and muscle con-
traction state by estimating the motion based on EMG signals
and providing an FES that reproduces the motion. However,
because this method extracts global amplitude information
from the EMG signal for identification, the responsiveness of
the motion transmission is reduced and the user’s sense of
agency may be impaired.

In this paper, we focus on the electromechanical delay of the
EMG signal and propose a discrimination model that connects
a transition state discriminator that uses the waveform length
of the signal as a feature and a steady state discriminator that
uses amplitude information in a stepwise manner. This model
enables fast and stable motion transfer, and effective training
can be performed without impairing the user’s sense of agency.
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Fig. 1. Concept of the EMG-driven FES rehabilitation system.

II. PROPOSED SYSTEM

The concept of the proposed EMG-driven FES rehabilitation
system is illustrated in Fig. 1. EMG signals are measured and
smoothed amplitude patterns and waveform length patterns are
calculated as feature vectors. The user’s motions are proba-
bilistically estimated using probabilistic neural networks, and
motion transfer is realized by applying electrical stimulation
to the muscle group to induce the estimated motion.

A. Signal processing and feature extraction

The EMG signals measured from I pairs of electrodes
attached to the user are A/D converted (sampling frequency: fs
Hz), and Ei(t) is obtained using a second-order Butterworth
bandpass filter (cutoff frequency: f low

c , fhigh
c Hz) to extract

the effective frequency components of the EMG signals. Next,
each signal is full-wave rectified and smoothed by a second-
order low-pass Butterworth filter (cutoff frequency: fc) to
compute E′

i. Then, E′st
i (t) at rest is excluded, and Enorm

i (t)
is determined by normalizing with the maximum value of
each channel. The smoothed amplitude pattern xa(t) =
[xa1(t), xa2(t), . . . , xai(t), . . . , xaI(t)]

T is calculated by nor-
malizing Enorm

i (t) so that all channels sum to 1.
The sum of the window width M samples for the distance

between two points Di(t) = |Ei(t)−Ei(t− 1)| is calculated
as the waveform length Ti(t). Then, the length is normalized
by the maximum value to obtain T norm

i (t). The waveform
length pattern xl(t) = [xl1(t), xl2(t), . . . , xli(t), . . . , xlI(t)]

T

is calculated by taking the maximum value of N samples of
the window width for the Ti(t).

B. Motion estimation

In motion estimation, discrimination is conducted using a
transition state discriminator using a waveform length pattern
xl(t) and a stationary state discriminator using a smoothed
amplitude pattern xa(t). The transition state discriminator



consists of a probabilistic neural network with I-dimensional
input and C+1-dimensional output, and a posterior probability
vector Ptran of C-class motion and rest class is calculated
from the transition of the initial EMG signal by inputting
xl(t). On the other hand, the steady state discriminator con-
sists of a probabilistic neural network with I-dimensional input
and C-dimensional output, and the posterior probability vector
Pst of the C class motion is calculated by inputting xa(t).
The posterior probabilities are combined by the transition time
tm and an arbitrary pre-determined steady state transition time
α, and the model posterior probability P (t) as follows:

P (t) =

{
Ptran(t) if tm ≥ α,

Pst(t) if tm < α,
(1)

where the transition time tm is increased when the transition
state discriminator is discriminated as an arbitrary motion class
and takes the value 0 when it is discriminated as a resting class.

The maximum class of posterior probabilities P (t) is esti-
mated as the movement performed by the user, and the joint
movement is realized by applying FES to the muscle group
that induces the corresponding movement. This enables fast
and stable motion transfer and effective training for the user.

III. EXPREMENTS

The number of subjects in the experiment was five, but
due to space limitations, this paper details the results of the
intervention for a stroke patient in his 70s. The subjects had
been left hemiplegic for 4.5 years and had contractures of the
left hand joints and fingers.

The EMG signals were measured using an integrated mea-
surement device Sensor I/F SI1000 (Oisaka Electronic Equip-
ment Ltd.) and a wet two-pole electrode, which was applied
to the skin surface of the flexor carpi radialis and extensor
carpi ulnaris muscles on the non-paralyzed side (I = 2). The
sampling frequency was set to 1000 [Hz], and the parameters
of the proposed signal processing method were f low

c = 1[Hz],
fhigh
c = 250[Hz], fc = 1[Hz], M = 80, N = 80. Stimulation

electrodes were applied to the subjects by trial and error,
based on anatomical knowledge of the positions of the target
muscles, to induce flexion and extension. Three discrimination
classes were defined and estimated: hand flexion, hand exten-
sion, and resting state using probabilistic neural networks [3].

The Modified Ashworth Scale (MAS), an evaluation method
of muscle tone, and the Fugl-Meyer Assessment (FMA) for
upper limb scores, a comprehensive evaluation method of
motor function impairment, were measured in the subjects
before and after the intervention. Training consisted of 15
minutes of training with the proposed system two days a week
for 12 weeks. Figure 2 shows the scenes during training. The
subject is able to perform bilateral movements triggered by his
own movement, since the movement of the non-paralyzed side
is transmitted to the paralyzed side by electrical stimulation.
The experiments were conducted under the approval of the
Ethics Committee of Fukuyama Memorial Hospital (Approval
No. 20231001).

Subject

Fig. 2. An example of the experimental scene.
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Fig. 3. Clinical scores measured before and after intervention.

Figure 3(a) presents the outcomes of FMA conducted pre
and post assessments. The results showed that all scores for
motor function (A-D), sensation (H), passive joint motion (I),
and joint pain (J) were improved by the intervention. The
major improvement was seen in joint pain (J), with the total
upper extremity score increasing from 35/126 to 57/126. The
FES intervention is known to reduce upper extremity pain [4],
and the proposed method may have had a similar effect.

The MAS results for the pre and post assessments are shown
in Figure 3(b). The results show that the scores for shoulder
abductors and hand extensors improved. In particular, hand
extension is a movement induced by the FES, suggesting that
muscle tone may have decreased due to the external induction
of muscle contraction.

IV. CONCLUSION

In this paper, we proposed a FES rehabilitation system based
on motion estimation. The experimental results showed that
the proposed system improved motor function and reduced
joint pain and muscle tension, suggesting that it could be
an effective rehabilitation system. In future studies, we plan
to increase the number of subjects and conduct a detailed
investigation of the rehabilitation effects of the proposed
system by comparing it with other rehabilitation methods.
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