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Abstract— Advanced by rich perception and precise exe-
cution, robots possess immense potential to provide profes-
sional and customized rehabilitation exercises for patients with
mobility impairments caused by strokes. Autonomous robotic
rehabilitation significantly reduces human workloads in the long
and tedious rehabilitation process. However, training a rehabil-
itation robot is challenging due to the data scarcity issue. This
challenge arises from privacy concerns (e.g., the risk of leaking
private disease and identity information of patients) during
clinical data access and usage. Data from various patients and
hospitals cannot be shared for adequate robot training, further
compromising rehabilitation safety and limiting implementation
scopes. To address this challenge, this work developed a
novel federated joint learning (FJL) method to jointly train
robots across hospitals. FJL also adopted a long short-term
memory network (LSTM)-Transformer learning mechanism to
effectively explore the complex tempo-spatial relations among
patient mobility conditions and robotic rehabilitation motions.
To validate FJL’s effectiveness in training a robot network,
a clinic-simulation combined experiment was designed. Real
rehabilitation exercise data from 200 patients with stroke
diseases (upper limb hemiplegia, Parkinson’s syndrome, and
back pain syndrome) were adopted. Inversely driven by clinical
data, 300,000 robotic rehabilitation guidances were simulated.
FJL proved to be effective in joint rehabilitation learning,
performing 20% - 30% better than baseline methods.

I. INTRODUCTION

Stroke is a global healthcare problem contributing to
individual disability and death [1]; rehabilitation typically
aims to train patients in compensatory strategies with prox-
imal (e.g., shoulder abduction, arm flexion) and distal (e.g.,
hand open, finger extension) movements to facilitate patient
recovery on strength, speed, endurance, and precision of
multijoint movements [1], [2]. While training a human expert
for professional rehabilitation is expensive and lengthy, for
example, an attending physician-level expert will need an
average professional education and training time of 8-11
years and 0.2-0.5 million dollars [3].

Powered by sensor and control technologies, robots can
precisely and durably provide patient training exercises to
ensure quality rehabilitation exercise, significantly reducing
human workload and economic/time costs; most importantly,
powered by the latest learning algorithms, a robot with
expert-level skills can be trained within several days [4].

1 Xinyu Jiang, Yibei Guo, Menghua Hu, and Rui Liu are with College
of Aeronautics and Engineering, Kent State University, Kent, Ohio 44242,
USA.

2 Ruoming Jin is with the Department of Computer Science, Kent State
University, Kent, Ohio 44242, USA.

3 Hai Phan is with the New Jersey Institute of Technology, Department
of Data Science, Newark, New Jersey 07102, USA.

4 Jay Alberts is with the Cleveland Clinic, Concussion Center, 9500
Euclid Ave, Cleveland, OH 44195, USA.

Fig. 1: Federated joint learning framework overview.

Therefore, it is promising to rely on robots for durable, re-
liable, and economical rehabilitation for movement disorder
stroke diseases, such as hemorrhagic stroke and hemiplegic
stroke [5].

However, training a professional and safe rehabilitation
robot is challenging due to clinical data scarcity. Besides
treatment-relevant information (e.g., stroke types and motor
impairments), clinical rehabilitation data also includes irrel-
evant but private information (e.g., patients’ identity, physio-
logical characteristics, and other illnesses) [6]. Restrained by
concerns of leaking patient information, clinical data cannot
be accessed across hospitals; small-amount local data inad-
equately train a rehabilitation robot, further undermining its
performance and safety and impeding widespread implemen-
tations of robotic rehabilitation [7]. Besides, patients vary
in physical characteristics and motor impairments, adding
challenges for robots to provide customized rehabilitation
[8].

Therefore, to address the data scarcity issue, in this
research, a novel joint training method – Federated Joint
Learning (FJL) was developed to collaboratively train robots
crossing hospitals. Particularly, our work in this paper mainly
has three contributions:

• A federated joint learning network was developed to
network robots crossing hospitals and enable them to
mutually learn rehabilitation skills from each other
without directly accessing original patient data.

• A LSTM-Transformer learning framework was devel-
oped to efficiently extract representative motion plans
from complex spatiotemporal motions of patient joints
with differences in body characteristics and motor im-
pairment degree.

• A novel relational loss was designed to refine the robot
pose estimation result and improve the accuracy of the
pose estimation model.

II. OUR APPROACH: FJL NETWORK

The FJL framework shown in Figure 1, consists of three
modules - 1) AFJL enables joint learning for robot rehabil-



itation while concealing sensitive patient data during shared
learning. 2) The Robot Joint Pose Estimation module accu-
rately infers robot poses from patient joint inputs, using the
LSTM-Transformer. 3) A relational-based refinement module
optimizes the robot pose estimation network parameters.
Robot Federated Joint Learning. The objective task is to
define an objective training function Fi that maps the model
parameters set θi ∈ Rd to a training loss respect to private
i-th robot data Ri.

min
θ

G (θ) :=

m∑
i=1

Fi (θi) + λ

m∑
i<j

A (∥θi − θj∥)

 (1)

where A
(
∥θi − θj∥2

)
is an attention including function that

described in [9] to measure the difference between θi and θj
in a non-linear manner, and λ is a normalized parameter.

At last, the gradient that gets from clients is aggregated
and updated by using the following formula:

θupdate = θ − η · 1
n

n∑
i=1

δCi
(2)

Robot Joint Pose Estimation. The proposed LSTM-
Transformer-based robot joint pose estimation module con-
sists of three parts. The model computation procedure
f (Xt−P+1:t) can be described as:

Xconcat = concat (Xt−p+1:t) (3)

Xlstm, hlstm = LSTM
(
Xconcat, h

i−1
lstm

)
(4)

Ŷt = TransformerBlock (Xlstm) (5)

At last, an MSE loss function is applied to train the robot
joint estimation model:

LMSE =
1

N

N∑
i=1

(f(Xt−P+1:t)− Yt)
2
=

1

N

N∑
i=1

(
Ŷt − Yt

)2

(6)
where Yt is the t-th robot joint ground truth and N is the
totalN -timestamp. X is the robot Joint settings as the input
including the joint’s force, positions, velocity in space, and
intrinsic positions.
Relational Loss. As defined in [10], to refine the pose
estimation accuracy and improve metrics results through
minimizing the correlation between MSE loss and PCK
metrics, the only way is to improve the negative correlation
between loss function and PCK metrics:

Os (L (y, ŷ; θ) ,M (y, ŷ)) = ρS (L (y, ŷ; θ) ,M (y, ŷ)) (7)

where θ is the optimized parameters in the network.

III. EXPERIMENT SETTINGS AND RESULT ANALYSIS

Clinical Data Driven Simulation. The experiment uti-
lized the KiMoRe dataset [11], encompassing rehabilitation
exercises for 200 stroke patients across three types. Using
Coppeliasim [12], a simulation scenario mimicking robotic
stroke rehabilitation was created. Human motions from the
dataset were used to guide simulated robotic arm movements,

Fig. 2: Settings for robot-guided rehabilitation.
TABLE I: The comparison of PCK value of each model with
relational loss and MSE loss

VIO Algorithms MSE Loss Relational Loss (Ours)

LSTM 0.674 0.751

Transformer 0.565 0.630

LSTM-Encoder-Decoder 0.541 0.743

LSTM-Transformer 0.706 0.754

generating robot data used for training the FJL model.
This trained model’s accuracy was validated to ensure its
effectiveness in stroke rehabilitation (Figure 2).

Result Analysis. The final results are presented in Table
I. This table highlights that the proposed LSTM-Transformer
with relational loss exhibits the best performance, signifying
that the LSTM-Transformer is adept at facilitating accurate
patient rehabilitation. From the results presented in Table
I, the superior accuracy and impressive generalization ca-
pabilities of the LSTM-Transformer network proved good
performance in robot pose estimation. The experiment result
indicates the performance of the LSTM-Transformer is 20%-
30% higher than the baseline.

IV. CONCLUSION AND FUTURE WORK

This study tackled challenges in federated joint learning
for rehabilitating robots by introducing FJT, a tailored ar-
chitecture enabling robot training without direct patient data
access. FJT safeguards patient data, enhances robot train-
ing, and improves spatial-temporal rehabilitation learning
for upper limb hemiplegia patients. Future work will focus
on developing collaborative mechanisms for synchronized
rehabilitation across patients’ upper and lower limbs.
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