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Abstract

In this paper, we propose a dynamic control method
of multi�ngered hands for pivoting an object in contact
with the environment. This pivoting operation is often
observed when a human moves a large or heavy object
such as furniture on the oor. Di�erent from the con-
ventional manipulation of the object by only �ngers, the
characteristics of the pivoting operation is that we can
use the reaction force from the environment. By using
this reaction force, we can expect the magnitude of the
forces applied to the object by the �ngers is smaller than
the conventional manipulation of the object by only �n-
gers. In this paper, taking this characteristics of the
reaction force into consideration, we propose a dynamic
control method for pivoting. To verify our approach,
simulation results are also presented.

1. Introduction

Many researchers have studied the manipulation of
an object which contacts with an environment such as
a table. While the environment constrains the motion
of the object, we can use the reaction force from the
environment in the manipulation of the object. Then,
we can expect that the needed number of the �ngers
to manipulate the object and the magnitudes of con-
tact forces applied by the �ngers are smaller than the
conventional manipulation of the object by only �ngers
such as Li et al.[1], Cole et al.[2], and Yokokohji et al.[3].
In this paper, the goal is to establish a control method
for forming force closure[4] grasp and manipulating the
object in contact with the environment by small con-
tact forces even when we cannot form force closure grasp
by only �ngers. Especially, we are interested in pivot-
ing operation. Pivoting operation is a rotation of the
object around an axis through a contact point between
the object and the environment. This manipulation is
often observed when a human moves a large or heavy
object such as furniture. Aiyama et al[5] have proposed
the quasi-static motion planning for manipulatinga rect-
angular object, but we cannot apply the planning to a
general object. On the other hand, some manipulations
similar to the pivoting operation have been studied. Han
et al.[7] proposed a control method for the quasi-static
manipulation of the spherical object on a plane by one
�nger which has 6 D.O.F. and a at �ngertip. Trinkle et
al.[8] quasi-statically analyzed the manipulation of lift-
ing up the object on the support. In another paper[9],
Trinkle et al. proposed a quasi-static manipulation plan-
ning for enveloping the slippery work piece on the palm
and manipulating it. But the dynamic control method
for these manipulations has been studied only by a few

researchers (for example, Yoshikawa et al.[6], but, the
control method is proposed under the assumption that
we can form force closure grasp by only �ngers ). In this
paper, we propose a dynamic control method of multi-
�ngered hands for pivoting an object in contact with the
environment.

This paper is organized as follows. In section 2, we
describe the target system of this paper for pivoting op-
eration, and in section 3, we develop a dynamic control
method for pivoting operation. In section 4, we con-
sider the derivation of desirable magnitude of internal
forces by which the magnitude of the contact forces of
the �ngers can become as smallas possible. To verify our
approach, we show simulation results in section 5.

2. Target System

The target system of this paper is shown in Fig.1.
This system consists of two �ngers and a rigid object.
each �nger has three joints and a spherical soft �nger-
tip, the object contacts the environment at one vertex,
and each contact surface is smooth. The given task is
to pivot the object in contact with the environment at
the vertex by the two �ngers along with a desired trajec-
tory. We make the following assumption for the analysis
of the soft �ngertips; (i) the contact area is so small that
the contact between the soft �ngertip and the object is
regarded as a point contact, (ii) the tangential frictional
force and frictional twist/spin moment around the con-
tact normal are independent and they are approximated
by the Coulomb model, and (iii) the energy dissipation
due to the �ngertip deformation is negligible.

3. Control Scheme

In this section, we propose the control scheme based
on the formulations by Li et al.[1], Cole et al.[2], Yokoko-
hji et al.[3], and Yoshikawa et al.[6]. Note that we permit
a rotational slip at the contact point between the �ngers
and the object.

3.1. Kinematics Constraints

In this subsection, we formulate the kinematic con-
straints between the �ngers and the object and between
the environment and the object. As shown in Fig.2, �R,
�B , �Fi(i = 1; 2), and �Ci

(i = 0; 1; 2) denote a reference
coordinate frame, an object coordinate frame placed at
the gravity center, a �ngertip coordinate frame placed at
the center of the spherical �ngertip of the �nger i, and
a frame �xed on the object surface at the contact point
Ci, respectively. Let the position of the origin and the
orientation of �a with respect to �c (�R) be given by



Figure 1: Target System

Figure 2: Objet, �ngers, and Environment

cpa(pa) and
cRa (Ra), respectively. Let a vector direct-

ing from the origin of �a to the origin of �b with respect
to �c (�R) be given by cpab (pab).

First, the constraint at the �xed contact point be-
tween the environment and the object is given by

HC0DB0

�
_pB
!B

�
=HC0

�
_pC0
!C0

�
= _pC0 = 0 (1)

where

DBi =

�
I3 �[(RB

BpBCi)�]
O3 I3

�
(2)

HC0 = [I3 O3] (3)

Here, !B and !Ci denote an angular velocities of the
object(�B ) and �Ci, [��] denotes a skew symmetric
equivalent to the cross product operation, and Ii and
Oi denote the i-order identity and null matrices, respec-
tively. Here, instead of the angular velocity of the object
!B , we use roll, pitch and yaw angles for expressing the
object orientation. The relation between !B(=!C0) and

the velocity of roll, pitch and yaw angles, _�B(=
_�C0), is

given by !B=T r
_�B where T r(�B) denotes the matrix

for the transformation. Then, from (1), we get

DB0

�
_pB
!B

�
=

�
_pC0
!C0

�
= T

�
0
_�C0

�
(4)

where T = diag[I3 T r(�C0)] ("diag" means a block di-
agonal matrix).

Second, since the contact between the �nger and the
object is a soft-�nger type contact, the constraint at the
contact point between the �nger i(i = 1; 2) and the ob-
ject is given by

HCiDBi

�
_pB
!B

�
=HCi

�
vCi
!Ci

�

= HCiDFi

�
_pFi
!Fi

�
(5)

where

DFi =

�
I3 �[(RFi

FipFiCi)�]
O3 I3

�
(6)

HCi =

8<
:
�
I3 O3

0 nTCi

�
(not spinning)

[I3 O3] (spinning)
(7)

Here, vCi denotes a vector of the contact point velocity,
where the components of the contact point movement
due to the rolling are excluded, and !Fi denotes an an-
gular velocity of �Fi.

Finally, the relation between the �ngertip velocity of
�nger i and the joint velocities of �nger i is given by�

_pFi
!Fi

�
= JFi _qi (8)

where JFi denotes the Jacobian matrix of �nger i and
qi denotes the joint vector of �nger i.

From (4) (5) (8), we get

HCiDBiD
�1
B0T

�
0
_�C0

�
=HCi

�
vCi
!Ci

�
= HCiDFiJFi _qi = JCFMi _qi (9)

3.2. Dynamics of Fingers and Object

In this subsection, we formulate the dynamics of the
�ngers and the object. Let tB be the resultant force and
moment applied to the object by the �ngers at the origin
of the frame �B , and ff be the force applied to the en-
vironment by the object at the contact point (note that
�f f expresses the reaction force). Then, from (1), the
resultant force applied by both the �ngers and the envi-
ronment is given by tB�DT

B0H
T
C0f f . So, the dynamics

of the object is given by

MB

�
�pB
_!B

�
+ hB = tB �DT

B0H
T
C0ff (10)

where MB denotes an inertia tensor of the object
and hB denotes centrifugal, Coriolis, and gravitational
forces.

Next, the dynamics of the �ngers is given by

MF (q)�q + hF (q; _q) = � � JTfS (11)

where � = col [�1 �2] 2 R
6 ("col" means a col-

umn vector or matrix formed by the following vector
or matrix) (� i 2 R3 denotes a joint torque of �n-
ger i), fS = col [fS1 fS2] (fSi denotes the force
and the moment applied to the object by �nger i at
the contact point Ci expressed by a vector represent-
ing the magnitudes of the components in the direc-
tions expressed by a column vector of HT

Ci in (7)),
MF = diag [MF1 MF2](MFi denotes an iner-
tia matrix of �nger i), hF = diag [hF1 hF2](hFi
denotes centrifugal, Coriolis, gravitational forces,
and so on), and J = JCFM + Jsm where
JCFM = diag [JCFM1 JCFM2](refer to (9)) and



Jsm = diag [Jsm1 Jsm2]. Here, J smi is represented
by

JTsmi = JTFi

�
O3 O3

N i O3

�
HT

Ci (12)

N i = �i�inCin
T
Ci (13)

where nCi denotes the contact normal, �i(= �1; 0; or1)
shows the direction of the frictional twist/spin moment
at the contact point Ci, and �i is determined by the
same law proposed by Yokokohji et al.[3] and denotes
the dynamic rotational frictional coeÆcient of �nger i
if a rotational slip occurs at Ci. Note that JTsmifSi
expresses a joint torque equivalent to the dynamic fric-
tional twist/spin moment, [O3 N i]H

T
CifSi.

3.3. Contact Forces and Moment

In this subsection, we formulate the force and the mo-
ment applied to the object by the �ngers at the contact
points, fS , and the reaction force, �f f .

First, we formulate fS . If a rotational slip doesn't
occur at Ci between �nger i and the object, the contact
force and moment fSi has 4 D.O.F. On the other hand,
�nger i has 3 D.O.F. Then, we express fS as follows

fS = JJ+fS + (I � JJ+)fS
�
= JfC + ~J ~fC (14)

where fC 2 R6, ~fC 2 R2, ~J is an arbitrary matrix

which satis�es JT ~J = 0, and J+ denotes the pseudo-
inverse matrix of J . Note that the former term in (14)
denotes the controllable contact force and moment by
the joint torques, and the latter term in (14) denotes the
uncontrollable contact force and moment. Then, from
(5) (14) and the principle of virtual work, the relation
between tB and fS is given by

tB = �A(JfC + ~J ~fC)
�
= AfC + eA~fC (15)

�A
�
= (DT

B +

�
O3 O3 O3 O3

N1 O3 N2 O3

�
)HT

C (16)

where DB= col [DB1 DB2], HC= diag [HC1 HC2].
Note that the second term in (16) relates the dynamic
rotational friction.

From (15), we get

fC = A+(tB � eA~fC) +�~f (17)

where � is an arbitrary matrix which satis�es A� =
0 , ~f express the magnitude of the component in the
direction expressed by a column vector of �, and A+

denotes the pseudo-inverse matrix of A.
Next, we formulate ff . Now we hope that the mag-

nitude of the contact force and moment applied to the
object by the �ngers can be as small as possible. But,
we can control only the former term in (14). Then, we
consider the following problem.

min fTCJ
TJfC (18)

subj. to. G

�
fC
ff

�
= t̂B

where

G
�
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T
C0 )
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�1

B0T

�
0
��C0

�
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�1
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B0
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�
0
_�C0

�
g

Note that the constraint in the problem is in order to
complement the dynamics of the object by JfC and ff .
By using (17), if we solve the problem with respect to

f f , ~f , and ~fC , we can get ~fC = 0, ~f = 0, and the
following equation.�

fC
f f

�
= ~Gt̂B (19)

where
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�
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T
B0H

T
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+
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T
C0B3B
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B3 = (BT
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�1HC0DB0
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B0H

T
C0B3(I �AA

+)T

3.4. Internal Force

In this subsection, we consider an internal force for
forming force closure grasp. In this paper, we consider
not only an internal force between the �ngers but also an
internal force between the �nger and the environment.
Then, if let [(JfIC)

T (fIf )
T ]T be the internal force, the

internal force satisfy the following equation.

G

�
f
I
C

fIf

�
= 0 (20)

Now, we set the component of the internal force
[(fIC)

T (fIf )
T ]T as follows.�

fIC
fIf

�
= diag(J�1t1 J�1t2 I3) ~�k = �k (21)

~� =

0
@ e12+�11en e10+�12en �13en
e21+�21en �22en e20+�23en
�2i=1�i1en e10+�2i=1�i2en e20+�2i=1�i3en

1
A

where eij denote an unit vector which directs from the
contact point Ci to the contact point Cj , k=[k1 k2 k3]

T

denote the magnitude of the components of the internal
force in the directions expressed by a column vector of
�, en denotes an arbitrary vector orthogonal to both
nC1 and nC2, and J ti(i = 1; 2) is a component of J
expressing the following equation.

J
T =

�
J
T
t1 J

T
r1 O3 O3

O3 O3 JTt2 JTr2

�
H

T
C

We determine �ij (i = 1; 2 j = 1; 2; 3) in (21) by substi-

tuting (21) to (20) . Then, [(JfIC)
T (fIf )

T ]T given by



Figure 3: Internal Forces

(21) represent the internal force. This internal forces in-
cludes both the term(white arrows in Fig.3(a)) given by
a conventional method to determine the internal forces
in the manipulation of an object by three �ngers and
the term (black arrows in Fig.3) which include the
static/dynamic frictional twist/spin moment at the con-
tact point Ci(i = 1; 2) and the force whose direction is
en and which cancels the moment.

3.5. Controller for Pivoting

In this subsection, we derive a controller for pivoting
operation.

From (1) (9) (10) (11) (15), the dynamics of the sys-
tem for pivoting is given by

Wx = b = col[b1 b2 b3 b4] (22)

W =

0
BB@

M f O6 J
T
J O O

O6 MB �A eA DT
B0H

T
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JCFM �HCDB O O O

O HC0DB0 O O O3

1
CCA
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�
_pB
!

�
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!
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where x = [�qT �pTB _!TB f
T
C
~f
T

C f
T
f ]
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By supposing the desired value of x is xd=[�qd �pBd
_!Bd fCd

~f
�

C f�f ]
T (note that ~f

�
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and that f�f include both the desired value related with

fCd and uncontrollable value related with ~f
�

C), we can
get the following controller.

� = M f �qd + hf + J
TJfCd (23)

�qd = J
+
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�
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_!Bd

�
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�
_pB
!

�
g (24)

fCd = [I6 O3]f�uI

+ ~G(MB

�
�pBd
_!Bd

�
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�pBd
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= D
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B0T

�
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�
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�1
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�
0
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where uB and uI are new inputs.

Figure 4: Contact Stability Corn

By applying the controller to the system (22), we get
W (xd�x) = 0. IfW is nonsingular, we can get xd = x

. Then, we get ��C0 = uB from (26) and k = uI from
(25).

Letting �C0d and kd be the desired trajectory of �C0
and k respectively , uB and uI are given by the following
servo controller

uB = ��C0d +KV ( _�C0d � _�C0)

+KP (�C0d ��C0) (27)

uI = kd +KI

Z t

0

(kd � k)dt
0

(28)

where KP , KV and KI are gain matrices. Then, ifW
is nonsingular, the object orientation error eP = �C0d�
�C0 and the force error ef = kd�k satisfy the following
equations

�eP +KV _eP +KP eP = 0 (29)

_ef +KIef = 0 (30)

Thus, with appropriateKP ,KV andKI , the actual ob-
ject orientation ��C0 and the component of the internal
forces k will converge to the desired trajectories asymp-
totically.

4. Nonlinear Programming

Introducing of internal force, the contact force and
moment applied by �ngers formulated in section 3 isn't
as small as possible. Then, in this section, we derive
a magnitude of the component of the internal force by
which the contact force and moment applied by �ngers
can become as small as possible.

We consider the following nonlinear programming.

min h(k) = fTCJ
TJfC (31)

subj: to: l(k) = V (

�
fS
ff

�
+ fext) � 0

Here, l � 0 express the translational frictional con-
straints which approximately represent the friction cone
at the contact point Ci as the polyhedral convex
cone with Li faces [10], where V =diag[V 1 V 2 V 0]

T，
V i=col[(aik)

T ] (k = 1; 2; � � �; Li), and aik denotes an out-
ward normal vector of the kth face of the polyhedral
convex cone. Note that fext in the constraint in the
programming denotes the contact force and moment re-
lated with an unexpected perturbation of input and the
uncontrollable contact force and moment. we determine



fext by using the concept of Contact Stability Corn pro-
posed by Nakamura et al.[12](Fig.4).

The contact force and moment related with an unex-
pected perturbation of input fSI can be expressed by

fSI = diag[J I3] ~GMBD
�1

B0T

�
O3

I3

�
���C0

�
= [Ĝ

T

1 Ĝ
T

2 Ĝ
T

0 ]
T
���C0 (32)

where ���C0 denotes the perturbation. On the other
hand, the contact force and moment related with un-
controllable contact force and moment fUC can be ex-
pressed by

fUC =

�
~J

(DT
B0H

T
C0)

+ eA
�
~fC

�
=

0
@ Ĵ1Ĵ2
Ĵ0

1
A ~fC (33)

Note that fUC0 in (33) expresses the contact force be-
tween the object and the environment occurred by un-
controllable contact force and moment applied by the
�ngers where fSIi and fUCi denotes the components of
fSI and fUC at Ci respectively.

Now, the desirable internal force makes
fSi+fSIi+fUCi can be in the approximated fric-
tion corn as well as the contact force and moment
applied by the �ngers can be as small as possible. Then,
we consider

By supposing a maximum magnitude of the pertur-
bation ���C0 is �� and a maximummagnitude of norm

of uncontrollable contact force and moment ~fC is fCM ,
the sets of fSIi and fUCi are given by

ffSIijf
T
SIifSIi � ��

2Ĝ
T

i Ĝig (34)

ffUCijf
T
UCifUCi � f2CM

~J
T

i
~J ig (35)

From this equation, we can determine the component of
fext, fexti as follows.

f exti =

p
�2si + 1

�si
(���Gimax + fCM�Jimax)nCi

where �Gimax and �Jimax denote the maximum singular
value of Ĝi and Ĵ i respectively.

This nonlinear programming (31) can be solved by us-
ing Kuhn-Tucker optimality conditions and linear com-
plementarily problem [11].

The obtained k become a desirable component of the
internal force.

5. Simulation

We show simulation results in this section to verify
the validity of our approach. We did the following 3
kinds of simulations; 1) dynamic control with constant
internal force 2) quasi-static control with constant in-
ternal force 3) dynamic control with obtained internal
force by nonlinear programming. Quasi-static control is
for the comparison and its scheme is given by neglect-
ing the term related with both the acceleration and the
velocity in the equation of motion of the �ngers and by
assuming the direction of the displacement of the objects

Figure 5: Transition of State

coincides with the direction of the resultant force and
moment applied to the origin of �B in dynamic control
scheme.

Suppose that the object is a regular prism whose
bottom is a regular pentagon whose side is 0:05[m]
length, whose height is 0:1[m] length, and whose weight
is 0:5[kg]. Each �nger is a 3 D.O.F. parallel link robot
(Fig.1) which is the same robot used in the experience in
Yokokohji et al.[3], and each �ngertip is a spherical soft
�ngertip with 0:018[m] radius. The initial con�guration
of the object with respect to the reference coordinate
frame is (0:[m] 0:[m] 0:05[m] 0:[rad] 0:[rad] 0:[rad])T

and the orientation of the object is expressed by
roll, pitch, and yaw. The initial position of �F1 is
(�0:0162[m] �0:0498[m] 0:080[m])T and the one
of �F2 is ( �0:0162[m] 0:0498[m] 0:080[m] )T .
We set each dynamic rotational frictional coeÆcient
0:002[m], each maximum static rotational frictional co-
eÆcient 0:0023[m], and each maximum static transla-
tional frictional coeÆcients 1:0. Servo gains are set to
KP = diag[ 10000: 10000: 10000:](1=sec2), KV =
diag[ 200: 200: 200:](1=sec), and KI = diag[ 100:
100: 100:](1=sec) in dynamic control and KP = diag[
3:425 3:425 3:425](Nm=rad), KV = diag[ 0:003425
0:003425 0:003425](Nmsec=rad), and KI = diag[100:
100: 100:](1=s) in quasi-static control , and sampling
time is set to 1:0[msec].

We consider the desired trajectory as follows;
�rst, tilting (raising) the object around the vertex
P (Fig.5(a)) until (0 �=8 ��=20)T [rad] for the inter-
val from t0(= 0:0[sec]) to t1(= 0:5[sec]), then, ro-
tating the object around the vertex P (Fig.5(b)) un-
til (�=8 �=8 ��=20)T [rad] for the interval from t1(=
0:5[sec]) to t2(= 1:[sec]), �nally, lowering the object
around the vertex P (Fig.5(c)) until (�=8 0 0)T [rad] for
the interval from t2(= 1:[sec]) to t3(= 1:5[sec]). And the
�ngers are removed form the object at t3(= 1:5[sec]).

When we let the internal force constant, we
set kd =[1: 1: 1:](N ) in dynamic control and
kd =[200: 200: 200:](N ) in quasi-static control. On the
other hand, when we use the nonlinear programming in
section 4, we set the parameter as follows;

�� =

�
=k ��C0d k �0:1 (k ��C0d k> 10:)

= 1:[rad=sec2] (k ��C0d k� 10:)

, fUCM = 0:1[N ], and we approximate the friction cone
as the polyhedral convex cone with 10 faces.

The result is shown in Fig.6 and Fig.7. Fig.6(a)
shows the actual object orientation (dot dash line) and
the desired one (solid line) in dynamic control, and
Fig.6(b) shows the ones in quasi-static control. From



Figure 6: Simulation Result of Pivoting (orientation)

these �gures, we can see that the actual object orienta-
tion converge to the desired orientation and that the de-
viation after t3 in quasi-static control occurs because the
velocity of the object doesn't converge to 0 at t3. This
result shows that dynamic control is more eÆcient than
quasi-static control. Fig.7 shows the norm of contact
force in case of dynamic control with constant internal
force (solid line) and in case of dynamic control with the
obtained internal force by the nonlinear programming
(dot line). From these �gures, we can see that the mag-
nitude of the forces applied to the object by the �ngers
is smaller than by the environment, namely, we can ma-
nipulate the object by small contact force applied by the
�ngers by using the reaction force from the environment.
we can also see that the contact force in case of using the
obtained internal force by the nonlinear programming is
smaller than in case of using constant internal force. So,
the validity of the nonlinear programming can be shown.

6. Conclusions

In this paper, we have proposed a dynamic control
method of soft-�nger hands for pivoting an object in
contact with the environment. The characteristics of
the pivoting is that we can use a reaction force from the
environment. By using this reaction force, we can expect
the magnitude of the forces applied to the object by the
�ngers is smaller than the conventional manipulation of
the object by only �ngers. In this paper, taking this
characteristics of the reaction force into consideration,
we propose a dynamic control method for pivoting op-
eration. To verify our approach, we have also presented
the simulation results.

Figure 7: Simulation Result of Pivoting (norm of force)
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