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Abstract— In this paper, we investigate optimal grasp points
on an arbitrary shaped grasped object using a required external
force set. The required external force set is given based on a task,
and consists of the external forces and moments, which must be
balanced by virtue of contact forces applied by a robotic hand.
When the origin is in the interior of the set, a force-closure grasp
is required. When the dimension of the set is one, an equilibrium
grasp is required. Therefore we can investigate whatever the
desired grasp is, such as when the desired grasp is a force-closure
and equilibrium grasps. Also, we only have to consider the forces
contained in a given required external force set, not the whole
set of generable resultant forces. Furthermore, we can avoid
the frame invariant problem (the criterion value changes with
the change of the task (object) coordinate frame)). We consider
an optimization problem from the viewpoint of decreasing the
magnitudes of the contact forces needed to balance any external
force and moment contained in a given required external force
set. In order to solve the problem, we present an algorithm based
on a branch-and-bound method. We also present some numerical
examples to show the validity of our approach.

Index Terms— Optimization, Grasping, Branch-and-bound
method, Required external force set

I. INTRODUCTION

Consider using a robotic hand to lift an object off a table.
If the object can not be grasped with appropriate contact posi-
tions between the object and the robotic hand, the gravitational
force of the object may not be able to be counteracted and the
object may fail to be lifted. In the same fashion, in order to
manipulate an object in a desired direction, we must grasp the
object with appropriate contact positions. Selecting the contact
positions is a very important issue for grasping. This article
deals with optimal grasp synthesis on general objects.

Much attention has been given to investigating optimal grasp
points on a grasped object [1]–[20]. This research can be
classified into the following two categories: 1) research aimed
at investigating optimal grasp points or regions for balancing
gravitational force (namely, aimed at an equilibrium grasp)
[1]–[3], 2) research aimed at investigating optimal grasp points
or regions for achieving force-closure grasps [4]–[20]. Force
closure implies that, if external force and moment in any
direction are applied to a grasped object, the external force
and moment can be resisted and the motion of the object can
be restrained.
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An upper bound of the magnitude of resistible external
force and moment in force-closure grasps exists. Therefore,
the magnitude can be used as a criterion for grasps. Li et
al. [21] evaluated a volume of the largest task ellipsoid. The
ellipsoid can be embedded in a set constructed by resultant
forces and moments, which can be applied to a grasped object
by a robotic hand. But the computation of the volume is
very complex. Using this criterion, then, makes it difficult to
investigate optimal grasp points. Commencing with Mirtich
et al. [4], some researchers [5]–[7] have investigated optimal
grasp points, which minimize the magnitudes of contact forces
needed to balance an external force. In these researches, the
magnitudes of external force and moment, which must be
balanced, were set to be lower than one. Since this setting was
not based on a substantial reason, the authors in [4]–[7] were
faced with the problem: ”How do we handle the difference
between the units of the external force and moment when
evaluating the criterion (the magnitude of the needed contact
forces)”? Markenscoff et al. [5] only evaluated force. Mirtich
et al. [4] made two different criterions for force and moment
and evaluated the magnitudes of contact force required to
balance external force and moment separately. Mangialardi
et al. [6] assumed external force and moment were applied
individually to a grasped object. Wang et al. [7] indirectly
evaluated the magnitudes of resistible external forces and
moments by the magnitude of the contact force of the clamp.
In sum, the class of the set of external forces to be balanced
has been limited in these studies [4]–[7]. Also, whole resultant
forces, applicable to a grasped object, must be evaluated.

In this article, we investigate optimal grasp points using
a required external force set [22], [23]. This set is given
based on a given task and consists of the external forces and
moments, which must be balanced by virtue of contact forces
applied by a robotic hand. In this case, then, the problem
of criteria regarding unit does not arise(because the set is
based on a task). Even when an object is manipulated, we
can use this set. We can construct the set by external forces
and moments which correspond to the required accelerations
or the motion of the object in the manipulation. Therefore,
optimal grasp points irrespective of both how to control the
robotic hand and how to manipulate the object are investigated.
When the origin is in the interior of the set, a force-closure
grasp is required. When the dimension of the set is one, an
equilibrium grasp is required. Therefore, by using the set, we
can investigate any desirable grasp including force-closure and
equilibrium grasps. In addition, only the forces contained in a
given required external force set need be evaluated, and not the
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whole generable resultant force. A required external force set
is based on a given task, and if the task (object) coordinate
frame changes, the required external force set also changes
according to the change of the task (object) coordinate frame.
Criterion value does not change irrespective of the change of
the task (object) coordinate frame. In other words, we can
avoid the frame invariant problem (criterion value changes
with the change of the task (object) coordinate frame).

In this article, we consider a problem for investigating
optimal grasp points from the view point of decreasing the
magnitudes of contact forces needed to balance the external
forces contained in a required external force set. Commencing
with Li et al. [21], there are some researches dealing with grasp
synthesis from this viewpoint (task-oriented grasp synthesis).
Teichmann et al. [8] considered the problem of searching the
grasp points, which minimize the number of contact points,
needed to balance any external force and moment contained
in a given set. Zhu et al. [9], [10], [24] presented a quantitative
measure of grasp, which is defined as the gauge function of a
convex polyhedral set in the wrench space (this set corresponds
to a required external force set). Based on the measure,
they developed algorithms ”for optimal grasp synthesis on
polygonal objects [9]”, and ”for grasp synthesis on objects
where contact points are located on a surface represented by
one continuous function [10]”. But, the used set corresponding
to required external force set was assumed to contain the origin
in its interior, and only a force-closure grasp was considered in
the above researches [8]–[10], [24]. Therefore, the benefit of
aiming at any desirable grasp was lost. In addition, Teichmann
et al. did not consider friction at the contact points, and did
not show any numerical examples to verify the effectiveness
of their approach. Pollard [25] considered grasp synthesis in
which the used set corresponding to required external force
set was not assumed to contain the origin in its interior.
However, she did not deal with optimization of grasp. While
there have been a number of works concerning grasp synthesis,
we observed that no optimal grasp synthesis on general objects
yet has been done using the concept of required external force
set which does not necessarily contain the origin in its interior.

To deal with this kind of optimal grasp synthesis, in this
paper, we develop an algorithm based on a branch-and-bound
method. In this method, a convex, polyhedral, required external
force set is used. When a given required external force set is
not a convex polyhedron, we use a convex polyhedron cir-
cumscribed in the convex hull of the original, given, required
external force set. In this way, we can deal with any kind
of required external force sets. Therefore, we can deal with
any desired grasps, including force-closure and equilibrium
grasps. This method can also find the global optimal solution
with a small computational time, and can deal with grasp of
any number of fingers.

In many cases the treatable shape of an object is restricted
in the investigation of optimal grasp points. The shape was
restricted to a polygon or a polyhedron in [1], [2], [5], [9],
[11]–[13], [18]. Every contact point was assumed to be on a
surface represented by one continuous function in [1], [2], [5],
[6], [10], [11]. In this case, two problems to solve occur: one
problem is to select the optimal surfaces represented by one

continuous function where we will locate contact points, and
the other problem is to select the optimal contact points. In
this article, admissible contact points are assumed to be given
by a collection of discrete candidate locations. When a set of
points is not given, but the geometry of a grasped object is, we
represent the geometry of the grasped object as a set of points.
In this case, if every point is close enough to its adjacent
point in order to attain linearity between the constraints of the
problem for the neighboring points, an accurate solution can
be obtained. Then, any arbitrary shaped object can be treated.
Also, we can deal with the above two problems (how to select
surfaces and how to select points) simultaneously.

Note that our algorithm can also be extended to the case of
utilizing another criterion such as accuracy and manipulability.

This paper is organized as follows. First, we define the
problem for investigating optimal grasp points using a required
external force set. Next, we present an algorithm to solve the
problem. Lastly, numerical examples are presented to show
the effectiveness of our approach.

A. Related works

A survey about equilibrium and force-closure grasps was
done by Shimoga [26]. In this survey, computation of contact
forces for achieving equilibrium and force-closure grasps is
discussed as well as criteria for grasping dexterity. Another
survey [11] discussed the following topics: the number of
fingers required for force closure, testing for force closure and
planning force-closure grasps i.e., the computation of contact
forces for force closure. Next, we briefly review another
research aspect; namely, the investigation of grasp points for
equilibrium and force-closure grasps.

As for the investigation of grasp points for equilibrium
grasp, Omata [1], [2] investigated the regions of contact points
on a convex polyhedral object to balance the gravitational
force. Trinkle et al. [3] considered where contact points should
be located, in the case of lifting an object off a table without
friction using two fingers.

As for the investigation of grasp points for force closure,
we can further classify the research according to whether the
magnitudes of resistible external forces are a subject of interest
or not. Research with no interest in the magnitudes, conducted
by Nguyen [12], showed a method for investigating the regions
of contact positions for achieving force closure. Chen et al.
[13] presented a graphical method for investigating optimal
contact positions when a 2-D and 3-D object are grasped by
three and four fingers respectively, using some grasp qualities:
robustness, manipulability, and task compatibility. Chen et
al. [14] investigated optimal contact positions for 2-finger
grasps, based on the concept of antipodal points and grasping
energy function. Ponce et al. [11] showed that force closure
using four fingers can be classified into concurrent grasp,
pencil grasp and regulus grasp. The authors also developed
a method for investigating the regions of contact positions
that can construct a concurrent grasp. Van der Stappen et al.
[15] presented algorithms to compute not only force-closure
grasp but also second-order-immobility grasp on polygonal
objects, based on a geometric search. Liu [16] presented a new
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sufficient and necessary condition for force-closure grasps, and
based on it, developed an algorithm to compute force-closure
grasps of n fingers on polygonal objects. Ding et al. [17]
investigated the contact positions on a polyhedral object to
achieve force closure, using a method based on a qualitative
test algorithm [27] based on a ray-shooting problem. Ding et
al. [18] investigated an eligible set of fixturing surfaces on
a polyhedral workpiece for achieving force closure first, and
then investigated the optimal fixturing positions on the eligible
set, which minimize the locating error of the workpiece. Li et
al. [19] investigated contact regions of fingers on polygonal
objects to achieve force closure, and evaluated the stability
of the contact regions by each convex polyhedron composing
the contact regions. Liu et al. [20] presented an algorithm to
compute 3-D force-closure grasps on objects represented by
discrete points. The algorithm combines a local search process
with a recursive problem decomposition strategy.

As for the research with an interest in the magnitudes of
resistible external forces, Markenscoff et al. [5] investigated
the grasp points which minimize the magnitudes of contact
forces needed to balance gravitational force. The gravitational
force was assumed to be applied to a polygonal object in the
direction perpendicular to the object. The grasp was done by
three fingers with frictional point contacts. Markenscoff et al.
[5] also investigated the grasp points minimizing the magni-
tudes of contact forces needed to balance an external force.
The external force was assumed to be applied to a polygonal
object in any direction and its magnitude was assumed to
be lower than one. The grasp was done by four fingers with
frictionless point contacts. Mirtich et al. [4] first investigated
the sets of grasp points, which minimize the magnitudes of
contact forces needed to balance an external force, and then
investigated the grasp points which minimize the magnitudes
of contact forces needed to balance an external moment,
among the selected sets of grasp points. The external moment
was assumed to be perpendicular to the grasp plane made by
the grasp points and its magnitude was assumed to be lower
than one. The external force was assumed to be applied in
any direction and its magnitude was assumed to be lower than
one. The grasp was done by two or three fingers. Mangialardi
et al. [6] investigated the grasp points which minimize the
average magnitude of the normal components of contact forces
required to balance external force and moment. The external
force and moment were assumed to be applied to a grasped
object individually in any direction with a unit magnitude.
Each grasp point was assumed to be on a surface represented
by one continuous function. Wang et al. [7] investigated the
fixturing points which minimize the magnitudes of contact
forces needed to balance external force and moment. The
object was assumed to be fixed by six locators and one clamp.
The locators were assumed to be able to passively apply a
contact force without friction. The clamp was assumed to be
able to actively apply a contact force without friction. Wang
et al. considered some algorithms in the search for the optimal
positions of the locators when a certain contact force is applied
to the object by the clamp. Note that we can indirectly evaluate
the magnitudes of resistible external forces and moments by
the magnitude of the contact force of the clamp.

II. PROBLEM DEFINITION

In this section, we define a problem for investigating optimal
grasp points, using a required external force set. First, we de-
scribe the target system, statics, and the frictional constraints.
Second, we define the required external force set. Lastly, we
formulate the problem for optimal grasp.

A. Target System

We consider the case where an arbitrary shaped rigid object
is grasped by m fingers of a robotic hand. We make the
following assumptions.

• Each finger makes a frictional point contact with the
object at the fingertip.
• A unique normal direction at each contact point can be
obtained.
• Each finger can apply any desired contact forces to the
object using a force-feedback control.
• Dynamic effects are negligible. Quasi-static motion and
static grasp are considered.

B. Statics and Frictional Constraints

First, we describe the relation between contact forces and
external force and moment applied to the object. Let C be a
set of all possible candidates of contact points. Let

N={pCNi
(i = 1, 2, · · · ,m)|pCNi

∈ C} (1)

be a combination of m contact points selected from C, where
pCNi

∈ Rd represents the position of the ith contact point
(i = 1, 2, · · · ,m), d = 2 in two-dimensional space, and d = 3
in three-dimensional space.

Let fN i∈ Rd be the contact force applied to the object
at the ith contact point (by the ith finger). Let w∈ RD be
the external force and moment applied to the object (with
respect to a frame fixed at the object), where D = 3 in two-
dimensional space and D = 6 in three-dimensional space.
Then, the object is in equilibrium if the following equation
holds;

Σm
i=1GN ifN i = −w. (2)

Here, GN i is

Gij =

⎛
⎝ 1 0

0 1
−(pCNiy

− poy) (pCNix
− pox)

⎞
⎠ ∈ RD×d

in two-dimensional space, where pCNix
and pCNiy

represent
the x and y components of pCNi

respectively, and pox and poy
represent the x and y components of po respectively, where
po represents the position of the origin of the frame fixed at
the object, and

GN i =

(
I

[(pCNi
− po)× ]

)
∈ RD×d

in three-dimensional space, where I represents an identify ma-
trix, and [a×] represents a skew symmetric matrix equivalent
to the cross product operation ([ a × ]b = a× b).
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Next, the frictional constraint at the ith contact point (i =
1, 2, · · · ,m) can be represented by

FfN i = {fN i|
√
t2fNi,1

+t2fNi,2
≤μNi

nfNi
, nfNi

≥0} (3)

in three-dimensional space, where nfNi
denotes the normal

force component of fN i, tfNi,1 and tfNi,2 denote the tangen-
tial force components of fN i, and μNi denotes the frictional
coefficient at the ith contact point. Note that in (3), tfNi,2=
0 can represent the frictional constraint in two-dimensional
space.

Aggregating (3) for all contact points, we obtain

FfN = {fN |fN i ∈ FfN i,
∀ i}, (4)

where

fN =
(
fT
N1,f

T
N2 · · ·fT

Nm

)
T .

C. Required External Force Set

We define the required external force set as follows.
Required External Force Set We call an external force

(moment) exerted on the object, required to be balanced for
completing a given task, a ”required external force”. We
call a set, composed of all possible required external forces,
a ”required external force set” WR ⊂ RD. Note that the
required external force set must be given such that if we
balance all the forces contained in the required external force
set, the stable grasp can be guaranteed.

D. Problem for Optimal Grasp

Based on the above discussion, we formulate a problem for
investigating optimal grasp points, using a required external

force set. Let |fN i|(=
√

fT
N ifN i) be the norm of the contact

force at the ith contact point. Let φ be the largest norm among
|fN i|’s (i = 1, 2, · · · ,m);

φ = max
i

|fN i|.
Then, φ has the following relation with the contact force at

every contact point;

φ ≥
√
fT
N ifN i (i = 1, 2, · · · ,m).

In general, there exist an infinite number of combinations
of contact points, in which we can balance any external force
and moment contained in a given, required external force
set. If the external force can be balanced by small contact
forces, we receive the following benefits; (1) prevention of
the contact forces from deforming or destroying the object,
(2) reduction of the perturbation of the resultant force and
moment resulting from the perturbation of the contact forces
(such perturbation can cause a disturbing force resulting from
the difference between the external force and its balancing
force), and (3) ability to grasp the object stably. We define the
following problem.

Problem for Optimal Grasp Find the combination of
contact points N ∗ which gives ρ such that

ρ = min
N∈S

max
w∈WR

min
fNi satisfy (2),(3)

φ (5)

where S denotes the set of all possible candidates of N . This
problem investigates the combination of contact points, which
minimizes the magnitude of contact forces needed to balance
any external force and moment contained in the given required
external force set.

III. ALGORITHM

In this section, we present an algorithm to solve the problem
(5) defined in the previous section. For the development of
the algorithm, the candidate contact points are assumed to
be given by a finite number of points. When not a set of
points, but the geometry of a grasped object is given, we
represent the geometry of the grasped object as a set of points.
In this case, if every point is close enough to its adjacent
point in order to attain linearity between the constraints of the
problem for the neighboring points, an accurate solution can
be obtained. Therefore, we have only to select the optimal
contact points from the candidate contact points. Let n be
the number of the candidate contact points. Then, the number
of the candidate N ’s can be expressed by C(n,m). (Note
that C(n,m) represents the number of combinations where
we select m from n.) Let Nk be the kth N contained in S
(k = 1, 2, · · · , C(n,m)).

In order to solve the problem defined in (5), we use a
branch-and-bound method [28], [29]. The branch-and-bound
method is often applied to a problem to find an optimal
solution among a finite number of feasible solutions. The
feasible solutions are the solutions of subproblems into which
we divide the original problem. This method finds the op-
timal solution by enumerating the solutions of the feasible
subproblems. In the process, we eliminate the subproblems
which we don’t have to solve, by using a relaxed problem
obtained by relaxing the constraints of the subproblem. This
elimination reduces the computational time required. Note that
the solution of the relaxed problem gives a lower/upper bound
of the solution of the original subproblem.

First, we formulate a required external force set. Second,
we define some subproblems and a relaxed problem of the
problem defined in (5). Lastly, we describe the procedure of
the algorithm.

A. Required External Force Set

We represent a required external force set as a convex
polyhedron. However, it is possible that a given required
external force set is not a convex polyhedron, as shown in
Fig.1. In such a case, we will define a new required external
force set that is a convex polyhedron circumscribed in the
convex hull of the given original required external force set, as
shown in Fig.1. The new required external force set (a convex
polyhedron) contains the original, required, external force set.
Therefore, if we can balance all the forces contained in the
new required external force set, we can also balance all the
forces contained in the original required external force set.
Then, the stable grasp can be guaranteed if we balance all the
forces contained in the new required external force set.

Next, let A1 be the set of generable resultant forces and A2

be a given non-convex polyhedral required external force set.
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Fig. 1. How to make a convex polyhedral required external force set

We seek the grasp points whose A1 must contain A2 (the grasp
points such that A1 ⊃ A2) . Denoting the convex hull of A1 by
coA1, we can get the relation: coA1 ⊃ coA2 [30]. Here, since
the set of generable resultant forces is a polyhedral convex set
[31], A1 = coA1, then A1 ⊃ coA2. Hence, the result for the
convex hull of the non-convex polyhedral required external
force set is the same as the result for a non-convex polyhedral
required external force set.
coA2 is given by:

coA2 = {
l∑

j=1

λjaj ,
l∑

j=1

λj = 1, λj ≥ 0, aj ∈ A2, l ∈ L}.

If l is finite, coA2 becomes a convex polyhedron. When coA2

isn’t a convex polyhedron, we approximate the convex hull
by a convex polyhedron circumscribed in the convex hull
(let l be finite). If the approximation is accurate enough, the
result for the convex polyhedral required external force set
circumscribed in the convex hull of the non-convex polyhedral
required external force set is almost the same as the result for
a non-convex polyhedral required external force set.

Accordingly, the given required external force set WR can
be expressed by a convex polyhedron composed of l vertexes:

WR = {w = Σl
j=1λjwvj , Σ

l
j=1λj = 1,

λj ≥ 0(j = 1, 2, · · · , l)} (6)

where wvj denotes the jth vertex of WR.

B. Subproblems and the Relaxed Problem

First, we consider the case where the object is grasped at
the contact points belonging to the kth (a certain) combination
of contact points Nk. Then, the following subproblem can be
obtained.

Subproblem 1

max
w∈WR

min
fNki satisfy (2),(3)

φ (7)

If we solve Subproblem1 for every Nk (k = 1 , 2 , · · · ,
C(n,m)), we can obtain the solution of the original problem
(5).

Next, in Subproblem1 (when the object is grasped at
the contact points belonging to Nk), we consider balancing
the required external force, wvj , which is the jth vertex
of WR. Then, we can obtain the following subproblem of
Subproblem1.

Subproblem 2
min φ

subject to
√
fT
Nki

fNki ≤ φ (i = 1, 2, · · · ,m)

Σm
i=1GNkifNki = −wvj

fNki
∈ FfNki (i = 1, 2, · · · ,m)

(8)

Now, we consider the case where we can obtain the optimal
solution of Subproblem2 for every wvj with N fixed at Nk

(k is fixed, j = 1, 2, · · · , l). Let ρNk,vj
be the solution of

Subproblem2 for wvj where N = Nk. Then, the largest ρNk,vj

among ρNk,vj
’s (k is fixed, j = 1, 2, · · · , l) is the solution of

Subproblem1 (for Nk). The following is the proof.
Proof: Let ρNk

be the optimal value of Subproblem1 for
Nk. Let ρNk,vj max be the largest ρNk,vj among ρNk,vj ’s (k is
fixed, j = 1, 2, · · · , l). Then, it is obvious that

ρNk
≥ ρNk,vj max .

The outline of the proof is such that if the contact forces
fNki

, whose magnitudes are lower than or equal to ρNk,vj max
,

can satisfy (2),(3) for every w ∈ WR, ρNk,vj max becomes the
optimal value of Subproblem1 for Nk.

Let f∗
Nk,j

=
(
(f∗

Nk1,j
)T · · · (f∗

Nkm,j)
T
)
T be the contact

forces which give the ρNk,vj
. For every contact force fNki

, we
consider the l-sided convex polyhedron of the contact force,
whose jth vertex is f∗

Nki,j
;

FNki = {f = Σl
j=1λjf

∗
Nki,j

,Σl
j=1λj = 1,

λj ≥ 0 (j = 1, 2, · · · , l)} (i = 1, 2, · · · ,m).

The relation between ρNk,vj max and f ∈ FNki (i = 1, 2,
· · · ,m) can be given by;

ρNk,vj max ≥ Σl
j=1λjρNk,vj

≥ Σl
j=1λj

√
(f∗

Nki,j
)Tf∗

Nki,j
,

≥
√
(Σl

j=1λjf
∗
Nki,j

)TΣl
j=1λjf

∗
Nki,j

,

(Σl
j=1λj = 1, λj ≥ 0, i = 1, 2, · · · ,m).

In other words, the magnitude of every contact force f ∈ FNki

(i = 1, 2, · · · ,m) is lower than or equal to ρNk,vj max
.

Next, we consider whether f ∈ FNki (i = 1, 2, · · · ,m) can
satisfy (2), (3) for every w ∈ WR.

First, since the frictional constraints (3) is convex, the con-
tact force contained in FNki satisfies the frictional constraint;

f ∈ FfN i,
∀ f ∈ FNki, i.

Second, the resultant force applied by contact forces con-
tained in FNki (i = 1, 2, · · · ,m) can be represented by

Wr = {Σm
i=1GNkiΣ

l
j=1λjf

∗
Nki,j

,Σl
j=1λj = 1, λj ≥ 0,

(j = 1, 2, · · · , l)}.
= {−Σl

j=1λjwvj ,Σ
l
j=1λj = 1, λj ≥ 0, (j = 1, 2, · · · , l)}

= −WR.

Then, f ∈ FNki (i = 1, 2, · · · ,m) can satisfy (2), (3) for
every w ∈ WR. Hence, ρNk

= ρNk,vj max .
In sum, we can solve Subproblem1 by solving Subproblem2

for every wvj .
Based on a linear inequality representation of a second order

cone constraint and the formulation by Buss et al. [32], the
inequality constraints of Subproblem2 can be rewritten by the
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Friction Cone

Circumscribed Convex Polyhedral Cone

Edge

(a)
√

fT
Nki

fNki ≤ φ (b) Friction cone

Fig. 2. Convex polyhedron and convex polyhedral cone circumscribed in the
constraints of Subproblem2

following constraints with respect to the symmetric matrices
FNki and PNki;

FNki =

(
φI fNki

fT
Nki

φ

)
� O

PNki =

⎛
⎝μNki

nfNki
0 tfNki,1

0 μNki
nfNki

tfNki,2

tfNki,1 tfNki,2 μNki
nfNki

⎞
⎠ � O (9)

where FNki� O means FNki is a positive semidefinite
matrix. Then, we can solve Subproblem2 by using a positive
semidefinite program (see appendix and [33], [34]).

Next, we define a relaxed problem whose constraints are
linear constraints relaxing (containing) the constraints of
Subproblem2. This relaxed problem is the problem of finding
Nk’s for which we do not have to solve Subproblem1 (and
Subproblem2), with a small computational time. Of course,
Subproblem2 can be used to find the Nk’s. However, since a
linear programming (simplex method) requires less computa-
tional time than a positive semidefinite program, we use the
relaxed problem. Note that the solution of the relaxed problem
gives a lower bound of the solution for the corresponding
Subproblem2; namely, that of the corresponding Subproblem1,
since the constraints of the relaxed problem contain the
constraints of the corresponding Subproblem2. Utilizing the
lower bound, we will find Nk’s for which we do not have
to solve Subproblem1 (for details, please refer to the section
III-C).

Among the constraints of Subproblem2, we approximate√
fT
Nki

fNki ≤ φ by a convex polyhedron circumscribed in
the constraint (Fig.2(a)). We approximate the friction cone
(3) by a L-sided convex polyhedral cone circumscribed in
the friction cone (Fig.2(b)) [35]. Hence, we can define the
following relaxed problem.

Relaxed Problem
min φ

subject to eTκV NkiuNki
≤φ (i=1,· · ·,m, κ=1,· · ·,d)

−eTκV NkiuNki
≤φ (i=1,· · ·,m, κ=1,· · ·,d)

Σm
i=1GNkiV NkiuNki = −wvj

(10)

where V Nki∈ Rd×L denotes the matrix whose jth column
is vNkij

, which is the jth unit edge vector of the frictional
convex polyhedral cone (V Nki=(vNki1

· · · vNkiL
)), uNki (≥

o)∈ RL denotes the vector whose jth element represents the
magnitude of the contact force in the vNkij

direction, and eκ∈

Set   LIST, kNkN ρρρρ ˆˆ,ˆˆ ==

Set       j=1

Find            (Solve Subproblem 2)jvkN ,ρ

Can we get ?

Set     j=j+1

j > l ?

Y

Y

N

Eliminate  Nk 

N

Set jvkN
j

kNkNkNjvkNjkN j ,, maxargˆ,ˆ,ˆ,max ρρρρρρρ ====

Find           (Solve Relaxed Problem )jvkN ˆ,ρ̂

Set       k=1
Set  k=k+1

Is Nk contained in the LIST ? N

k > NN ?

Y

N

Y

Compute  }ˆ,ˆmax{ˆ ˆ, jvkNkNkN ρρρ =

Eliminate  Nk

Can we get ?
Y

N

Y
N?ˆˆ

kNρρ ≥

Compute  }ˆ{minargˆ
ˆ, jvkN

k
k ρ=

Find            (Solve Subproblem 2)jvkN ,ˆρ

Can we get ?

Set     j=j+1

j > l ?

Y

Y

N

Eliminate  
N

Set       j=1      

k
N ˆ

Set jvkN
jkNkNjvkNjkN j ,ˆˆˆ,ˆˆ maxargˆ,ˆ,max ρρρρρ ===

?ˆ
k̂Nρρ ≥

IF kNkN ˆˆ
ˆ,ˆ ρρρρ =>

?,|ˆ| LISTNkkN ∈<− ∀ερρ

Finish

Select Nk from the LIST

N

Y

N

Y

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Fig. 3. Flow chart of the algorithm

Rd denotes the vector whose κth element is 1 and whose other
elements are 0 (for example, e1=(1 0 0)T in three-dimensional
space). Note that the Relaxed Problem can be solved by a
simplex method.
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C. Procedure of Algorithm

In this subsection, we describe the procedure of the algo-
rithm to solve the problem defined in (5). Fig.3 shows the flow
chart of the algorithm. We define the following nomenclatures:
ρ̂ The (best known) feasible solution at each iteration
ρNk

The solution of Subproblem1 for Nk

ρ̂Nk
The (best known) lower bound of the solution of
Subproblem1 at each iteration (This bound is used
to find eliminable Nk’s in Step 4.)

ρNk,vj The solution of Subproblem2 for Nk and wvj

ρ̂Nk,vj The solution of the Relaxed Problem for Nk and wvj

LIST The list of feasible Nk’s
NN The number of the feasible Nk’s (NN≤ C(n,m))
ρ̂ The lower bound value of ρ̂ (the initial value of ρ̂)
ρ̂Nk

The lower bound value of ρ̂Nk
(the initial value of

ρ̂Nk
)

Step 1 Put all feasible (candidate) Nk’s into the LIST . Set
ρ̂= ρ̂ and ρ̂Nk

= ρ̂Nk
(k = 1, 2, · · · , NN ).

Step 2 First, we search the first eligible value of ρ̂, solving
Subproblem1 at a certain Nk. Select a certain Nk from
the LIST and solve Subproblem1 for the Nk as shown
in Fig.4(a). Here is how to solve Subproblem1. First,
compute the solutions of the all Subproblem2s which are the
subproblems of Subproblem1 for the Nk (Compute ρNk,vj

’s
(k is fixed, j = 1, 2, · · · , l)). If there exists at least one
Subproblem2 which has no solution, the Subproblem1 has no
solution. If there exist the solutions of the all Subproblem2s,
the largest ρNk,vj

among the solutions ρNk,vj
’s (k is fixed,

j = 1, 2, · · · , l) becomes the solution of the Subproblem1
(ρNk

= maxj{ρNk,vj}).
Step 3 If we can get the solution of the Subproblem1 in
Step 2 (ρNk

= maxj{ρNk,vj
}), substitute the solution into ρ̂

(ρ̂= ρNk
), also substitute the solution into ρ̂Nk

(ρ̂Nk
= ρNk

).
Let ĵ be the number of the largest ρNk,vj (ĵ=argmaxj
{ρNk,vj}). Let wvĵ be the wvj which gives the solution ρNk

.
If we can not get the solution, we eliminate the Nk from the
LIST and go back to Step2. Note that we select wvĵ for the
search, supposing the corresponding ρNk,vĵ

at every Nk will
be most possibly the largest among ρNk,vj

’s (j = 1, 2, · · · , l).
Step 4 Solve the Relaxed Problem where wvj = wvĵ , and
at every Nk contained in the LIST (j is fixed to be ĵ. k is
the number of each Nk contained in the LIST ) as shown in
Fig.4(b). In other words, we fix wvj and search the eliminable
Nk’s. If we cannot get the solution at a certain Nk, we must
eliminate the Nk from the LIST . If we can get the solution
ρ̂Nk,vĵ

at a certain Nk, compute ρ̂Nk
= max{ρ̂Nk

, ρ̂Nk,vĵ
}.

Therefore, we compute the (best known) lower bound of
the solution of Subproblem1 for the Nk at this moment. If
ρ̂ <ρ̂Nk

, eliminate the Nk from the LIST . At the end of this
subsection we present the proof for why the eliminations are
approved.
Step 5 Let Nk̂ be the Nk at which ρ̂Nk,vĵ

is the least among

ρ̂Nk,vĵ
’s at all Nk’s contained in the LIST (k̂=argmink

{ρ̂Nk,vĵ
}). Note that we select Nk̂ for the search, supposing

Nk̂ will most possibly be the optimal Nk.
Step 6 Solve Subproblem1 for the Nk̂ as shown in Fig.4(a). If

Nk

wvj

Nk

wvj

(a) Step 2(6) (b) Step 4

Fig. 4. The diagram of Step 2(6) and Step 4

we can get the solutionρN
k̂

(ρN
k̂
= maxj{ρN

k̂
,vj}), substitute

the solution into ρ̂Nk
. Also, substitute the wvj , which gives

the solution, into wvĵ . Note that ĵ=argmaxj {ρN
k̂
,vj}. If

we cannot get the solution or ρ̂ <ρN
k̂

, eliminate the Nk̂ from
the LIST and go back to Step5. If ρ̂ >ρN

k̂
, ρ̂ =ρN

k̂
.

Step 7 If we can get the relation |ρ̂ − ρNk
| < ε (ε denotes

an arbitrary small positive value) at all Nk’s contained in the
LIST , finish the loop. Otherwise, go back to Step4.

Remark: This algorithm belongs to a branch-and-bound
algorithm. Since the algorithm should conceptually enumerate
all possible solutions of the finite number of problems, it
always convergences at the global optimum. In Step 4, we
evaluate the alternatives of the solutions and judge whether
the Nk is non-optimal or not, within a small computational
time. Next, we eliminate Nk’s which are revealed to be non-
optimal. This fast elimination in Step 4 enables (users) to
reduce the search domain, and to avoid an exhaustive search,
thus shortening the computational time.

The following proof illustrates why the eliminations are
approved in Step 4.

Proof: The set of the constraints of Relaxed Problem
contains that of Subproblem2. Therefore, if there is no solution
to the relaxed problem, then there is also no solution to
the corresponding Subproblem2. If there is a solution to the
relaxed problem, then the solution to the relaxed problem
gives a lower bound of the solution of the corresponding
Subproblem2: ρ̂Nk,vj

≤ ρNk,vj
. Let Gj,Nk

be the set of j’s
whose corresponding ρNk,vj

has already been solved at the
iteration. Then, the following relation holds:

ρ̂Nk
= max

j∈Gj,Nk

{ρ̂Nk,vj
} ≤ max

j
{ρ̂Nk,vj

}

≤ max
j

{ρNk,vj
} = ρNk

.

If ρ̂ <ρ̂Nk
, then ρ̂ <ρNk

. Therefore, we can see that the Nk

is not optimal, and we can eliminate the Nk.

IV. NUMERICAL EXAMPLES

In order to show the effectiveness of our approach, we show
some numerical examples in this section.

A. Examples in Two-Dimensional Space

We show the target objects and the candidate contact points
in Fig.5. In this figure, the points on the objects indicate the
candidate contact points. The number of the candidate contact
points is 56 in Case I and 86 in Case II. Note that the candidate
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Fig. 5. Target objects and candidate contact points
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Fig. 6. Required external force set

contact points are sampled such that the candidate contact
points are uniformly distributed. The object coordinate frame
is located at the geometric center of each object (the reference
frame is also located at the same geometric center).

Letting fx and fy be the x and y components of the external
force, respectively, and m be the external moment, we set the
required external force set as follows:

WR = {
⎛
⎝ fx

fy
m

⎞
⎠ =

8∑
j=1

(λ1j

⎛
⎝ wxj

wyj

0.8γsg

⎞
⎠

+ λ2j

⎛
⎝ wxj

wyj

−0.8γsg

⎞
⎠),

2∑
i=1

8∑
j=1

λij = 1, λij ≥ 0} (11)

wxj =
sg

cos(π8 )
cos(

π

8
+

π

4
j)

wyj =
sg

cos(π8 )
sin(

π

8
+

π

4
j)

where s denotes the area of each object, g=0.01 denotes the
specific gravity of each object, and γ denotes the distance
between the geometric center of each object and the vertex
closer to the geometric center than any other vertexes. Here,
we consider the following case;

• The gravitational force (external force) can be applied
to the object in any arbitrary direction, resulting from the
motion of the robotic arm equipped with the robotic hand.

• The external moment can be applied to the object result-
ing from the displacement of the position of the center
of gravity. The position of the center of gravity can move
within the circle. The center of the circle is the geometric
center, and the radius of the circle is 0.8γ.

TABLE I
ρ IN THE PROBLEM DEFINED IN (5)

(a) Case I

μ 0.1 0.3 0.5

2 fingers 3.71 1.38 0.919
3 fingers 3.13 0.978 0.724

(b) Case II

μ 0.1 0.3 0.5

2 fingers 35.1 6.44 3.92
3 fingers 6.21 2.77 2.01
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(a) 2 fingers (b) 3 fingers

Fig. 7. Optimal grasp points in Case I

In this case, a convex hull of the WR can be written by

WR = {(fx, fy, m)T |
√
f2
x + f2

y ≤ sg,

−0.8γsg ≤ m ≤ 0.8γsg}.
And, we approximated

√
f2
x + f2

y ≤ sg by a regular octahe-
dron circumscribed in the sets (see Fig.6). Thus, we can obtain
the WR given by (11).

The computation was done in the cases where the number
of fingers is 2 and 3 and where the frictional coefficient is
0.1, 0.3, and 0.5. When we obtain some optimal Nk’s by
disregarding symmetrically arranged Nk’s, we searched the
(optimal) Nk which minimizes the criterion

max
w∈WR

min
fNi satisfy (2),(3)

√√√√ m∑
i=1

fT
N ifN i

among the obtained optimal Nk’s. By this search, we can
obtain the grasp points which minimize the norm of contact
forces needed to balance any external force and moment
contained in the required external force set.

The results of the optimal combination of contact points are
shown in Fig.7 and Fig.8. The results regarding the optimal
value of the problem defined in (5), ρ, are shown in Table I.
In Fig.7 and Fig.8, (a) shows the results in the case where the
object is grasped by 2 fingers, (b) shows the results in the case
where the object is grasped by 3 fingers, and the arrows show
the obtained optimal grasp points. Note that we show either
of the obtained 2 optimal combinations of contact points in
the case where their arrangements are symmetric. Note also
that we show only one optimal combination of contact points
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Fig. 8. Optimal grasp points in Case II

−2

−1

0

1

2

3

−2

−1

0

1

2

3

−1

0

1

2

Fig. 9. Target object and candidate contact points in three-dimensional space
(n = 429)

in Fig.7(a), (b), and Fig.8(a), since the optimal combination
of contact points was the same for every magnitude of the
frictional coefficient.

From Fig.8(b), we can see that the optimal grasp points
approach the symmetric arrangement with the increase of the
magnitude of the frictional coefficient. Here, the symmetric
arrangement means any angles, between any two of three
lines connecting ”the geometric center of the object” and ”the
optimal grasp points”, are 120◦. From Table I, we can see that
the magnitude of contact forces needed to balance the required
external force, becomes small with increases of the magnitude
of the frictional coefficient and the number of fingers.
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Fig. 10. Optimal grasp points in three-dimensional space (n = 429)

B. Example in Three-Dimensional Space

The target object and the candidate contact points are shown
in Fig.9. The target object is a triangular prism whose base is
a right isosceles triangle (4 × 4 × 4

√
2). The points on the

object indicate the candidate contact points. Note that Fig.9,
for ease of viewing, does not show the candidate contact
points on the bottom face and on the back side (this side
corresponds to the hypotenuse of the top/bottom face). We
included the candidate contact points on the bottom face in
the same way as those on the top face. We included the
candidate contact points on the back side in the same way as
those on the front sides. The number of the candidate points
is 429 (78 for the top and bottom faces, 91 for the every
front side and the back side). Note that the candidate contact
points are sampled such that the candidate contact points are
uniformly distributed. The object coordinate frame is located
at the geometric center of the object (the reference frame is
also located at the same geometric center). We used a 16-sided
frictional convex polyhedral cone in the Relaxed Problem. We
set the following required external force set, considering the
similar situation of the case in two-dimensional space.

WR = {(fT , mT )T | − sg ≤ fi ≤ sg,

− 0.8γsg ≤ mi ≤ 0.8γsg (i = 1, 2, 3)} (12)

where f and m denote the external force and moment
respectively, fi and mi denote the ith components of f and
m respectively, s denotes the volume of the object, g=0.01
denotes the specific gravity of the object, and γ denotes the
distance between the geometric center of the object and the
face which is closer to the geometric center than any other
faces. Here, we consider the following case;

• The gravitational force (external force) can be applied
to the object in any arbitrary direction, resulting from the
motion of the robotic arm equipped with the robotic hand.

• The external moment can be applied to the object result-
ing from the displacement of the position of the center
of gravity. The position of the center of gravity can
move within the sphere. The center of the sphere is the
geometric center, and the radius of the sphere is 0.8γ.

In this case, a convex hull of WR can be written by

WR = {(fT , mT )T |
√

fTf ≤ sg,
√
mTm ≤ 0.8γsg}.

And, we approximated
√
fTf ≤ sg and

√
mTm ≤ 0.8γsg

by cubes circumscribed in the sets. Thus, we can obtain the
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WR given by (12).
The number of the fingers was set to 3. The frictional

coefficient was set to 0.3.
The result of the optimal combination of contact points

is shown in Fig.10. In Fig.10, the arrows, whose tip is a
black sphere, show the obtained optimal grasp points. X
shows the position of the origin of the reference frame.
The gray triangle shows the projection drawing of the tri-
angle, made by the three optimal grasp points, on the bot-
tom face of the object. The positions of the obtained opti-
mal grasp points were (0.3590,−4/3,0)T , (2/3,2/3,0)T , and
(−4/3, 0.3590, 0)T . The optimal value of the problem (5), ρ,
was 0.688.

From this result, we can see that the optimal point on the
back side is located at the projection of the X point (origin)
on the back side, and the optimal point on the every front
side is located at the position shifting a little toward the back
side from the projection of the X point (origin) on the front
side. For the confirmation, we compute ρ in the case where
we grasp the object at the projection of the X point (origin)
on every side. The ρ was 0.718, which is bigger than 0.688
(the optimal value).

C. Efficiency of the algorithm

Branch-and-bound-algorithm completely does not guarantee
a smaller computational time than an exhaustive enumerating
search. However, in a practical sense, the eliminations of
redundant enumeration through child problems dramatically
reduce the computational time. Here, we discuss the efficiency
of our algorithm, from the view point of iteration number,
elimination number of Nk’s, sampling effect of contact points,
and reduction of computational time.

First, we consider the iteration number of our algorithm,
using the following nomenclatures:

Nsdpj
The number of Nk’s where the number of the
calculated Subproblem2s is j(≤ l).

Nsimj
The number of Nk’s where the number of the
calculated Relaxed Problems is j(≤ l).

nsdp The number of constraints of Subproblem2 (=
3m+m(d+ 1)).

nsim The number of constraints of the Relaxed Prob-
lem (= 2md+D).

Note that if j of Nsdpj
(Nsimj ) is smaller than l, the

corresponding Nk’s are eliminated before all possible
corresponding Subplblem2s (relaxed Problems) are calculated.
When we do the exhaustive enumerating search (enumerating
all possible solutions of Subproblem1(2)), Nsdpl

is equal to
NN .

Since the number of iterations of a positive semidefinite
program is given by O(9(nsdp)

2.5) where setting X0= S0=
10I and ε = 1 × 10−7 (see appendix), the total iteration
number for calculating Subproblem2s in our algorithm is
given by O(

∑l
j=1Nsdpj

j9(nsdp)
2.5). Similarly, since the

number of iterations of a linear program (simplex method)
is given by O(2nsim), the total iteration number needed to
calculate the Relaxed Problems in our algorithm is given by
O(

∑l
j=1 Nsimj j2nsim). The total iteration number for the

exhaustive enumerating search is given by O(NN l9(nsdp)
2.5).
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(d) n = 341

Fig. 11. Target object and candidate contact points for various n’s

Here we assume that the eliminations of redundant enu-
merations are efficiently done (refer to Fig.13∼16 at the later
discussion). Therefore, the following relation holds:

l∑
j=1

Nsdpj
j 
 Nsdpl

l = NN l.

In this case, the relation between the total iteration numbers
”for Subproblem2s in our algorithm” and ”for an exhaustive
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Fig. 12. Optimal grasp points for various n’s

enumerating search” is given by:

O(

l∑
j=1

Nsdpj
j9(nsdp)

2.5) 
 O(NN l9(nsdp)
2.5). (13)

On the other hand, since
∑l

j=1Nsimj j < NN l, 2nsim

9(nsdp)

2.5, the relation between the total iteration numbers
”for Relaxed Problems in our algorithm” and ”for an exhaus-
tive enumerating search” is given by:

O(

l∑
j=1

Nsimj
j2nsim) 
 O(NN l9(nsdp)

2.5). (14)

The total iteration number for our algorithm is given by
the summation of the iteration numbers for Subproblem2s and

Relaxed Problems. From (13) and (14), since both the iteration
numbers are much smaller than that for an exhaustive enumer-
ating search, the total iteration number for our algorithm is
much smaller than that for an exhaustive enumerating search.
In addition, the computational time at each iteration for a
Relaxed Problem is much smaller than that for a Subproblem2.
Hence, total computational time for our algorithm is much
smaller than that for an exhaustive enumerating search.

Next, we show the efficiency of our algorithm using an
elimination number of Nk’s, the number of candidate contact
points (related with sampling effect of contact points), and
computational time in the practical numerical examples as
described in sections IV-A and IV-B. Our algorithm was
implemented in C/C++ and the calculations were done on
a Dell Dimension 8400 computer (CPU: Pentium 4 3.4GHz,
Memory: 1GB).

Fig.13 (a), (b) and (c), respectively, show the computa-
tional time, the number of calculated Subproblem2s, and the
number of calculated Relaxed Problems in each case of two-
dimensional examples (the fictional coefficient is 0.3). From
Fig.13 (c) (and (b)), we can see that the number of calculated
Relaxed Problems is much larger than the number of calculated
Subproblem2s, and then that the eliminations of redundant
enumeration are efficiently done in every case. But, from
Fig.13 (a), we can see that the computational time does not
always depend on the number of candidate contact points. It is
also clear that the computational time increases with increase
of the number of fingers.

To investigate the sampling effect of contact points, we
calculated for various numbers of candidate contact points in
the case of the three-dimensional example in section IV-B.
Fig.11 (a) ∼ (d) and Fig.9 show the target object and the
candidate contact points for each case. Fig.12 (a) ∼ (d) and
Fig.10 show the obtained optimal contact points for each case.
Fig.14 (a), (b) and (c), respectively, show the computational
time, the number of calculated Subproblem2s, and the number
of calculated Relaxed Problems for each case. Simultaneously,
we computed Subproblem2 in place of the Relaxed Problem
to find Nk’s which we do not have to solve for Subproblem1.
Fig.15 (a) and (b), respectively, show the computational time
and the number of calculated Subproblem2s for each case in
this example.

From Fig.12 (a) ∼ (d) and Fig.10, we can see that the
optimal contact points are almost the same and therefore,
the sampling effect of contact points is small with respect
to optimal contact points. From Fig.14, we can see that the
computational time increases with increase of the number of
candidate contact points, and that the number of calculated
Relaxed Problems is much larger than the number of calculated
Subproblem2s. This result shows that the eliminations of
redundant enumeration work effectively in our algorithm.
Comparing Fig.14 with Fig.15, it is clear that the compu-
tational time is dramatically reduced for the eliminations
of redundant enumeration using the Relaxed Problem (see
Fig.15 (a). In Fig.15 (a), the reference value represents the
results when using our original algorithm (Fig.14 (a)), and the
obtained value represents the results when using eliminations
by Subproblem2.). It means that the eliminations of redundant
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enumeration by the Relaxed Problem work effectively in our
algorithm.
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In our approach, the number of the candidate combinations
of contact points is C(n,m), and the number becomes large
with increase of the candidate contact points or the number of
fingers. Here, we introduce a way to further reduce the com-
putational time. We consider the following Modified Relaxed
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Problem:
Modified Relaxed Problem
min φ

subject to eTκV
′
Nki

u
′
Nki

≤φ/
√
2 (i=1,· · ·,m, κ=1,· · ·,d)

−eTκV
′
Nki

u
′
Nki

≤φ/
√
2 (i=1,· · ·,m, κ=1,· · ·,d)

Σm
i=1GNkiV

′
Nki

u
′
Nki

= −wvj

where V
′
Nki

∈ Rd×L denotes the matrix whose jth column is
v

′
Nkij

which is the jth unit edge vector of the L-sided convex

polyhedral cone inscribed in the friction cone (V
′
Nki

=(v
′
Nki1

· · · v
′
NkiL

)), and u
′
Nki

(≥ o)∈ RL denotes the vector whose
jth element represents the magnitude of contact force in the
vNkij

direction.
The Modified Relaxed Problem is obtained by linearizing

the constraints of Subproblem2. Note that the constraints of the
Modified Relaxed Problem is contained in the constraints of
Subproblem2, and thus, the solution of the Modified Relaxed
Problem is a feasible solution of Subproblem2, different from
the solution of the Relaxed Problem (note that the solution
of the Relaxed Problem is possibly not a feasible solution of
Subproblem2).

By using the Modified Relaxed Problem in place of both
Subproblem2 and the Relaxed Problem in our algorithm, we
can not only reduce the computational time, but also get a sub-
optimal feasible solution. In this case, instead of seeking the
solution to Subproblem1 for every Nk, we seek the solution to
the following problem, which linearizes original Subproblem1:

Linearized Subproblem1

max
wvj∈WR

min
fNki∈Ω′

φ,

Ω
′
=

⎧⎪⎨
⎪⎩

eTκV
′
Nki

u
′
Nki

≤φ/
√
2 (i=1,· · ·,m, κ=1,· · ·,d)

−eTκV
′
Nki

u
′
Nki

≤φ/
√
2 (i=1,· · ·,m, κ=1,· · ·,d)

Σm
i=1GNkiV

′
Nki

u
′
Nki

= −wvj

⎫⎪⎬
⎪⎭ .

Fig.16 (a) and (b), respectivelly, show the computational
time and the number of calculated Modified Relaxed Problems
for each case. The obtained optimal contact points for each
case are same as those as shown in Fig.12 (a) ∼ (d) and
Fig.10. Hence, we can get enough optimal grasp points by
this Modified Relaxed Problem- based algorithm. Comparing
Fig.14 (a) with Fig.16 (a), it is clear that the Modified Relaxed
Problem- based algorithm requires a smaller computational
time (see Fig.16 (a). In Fig.16 (a), the reference value rep-
resents the results when using our original algorithm (Fig.14
(a)), and the obtained value represents the results when using
Modified Relaxed Problem- based algorithm.). Thus, if only
(sub-)optimal contact points are needed and an optimal value
is not needed, the (sub-)optimal contact points can be obtained
in smaller computational time using the Modified Relaxed
Problem- based algorithm.

The other way to further reduce the computational time is by
first reducing the candidate contact points and searching the
optimal grasp points, and second, by searching the optimal
grasp points among the original candidate contact points near
the obtained optimal grasp points. By following this way to
reduce computational time, we get approximate optimal grasp

points in a smaller computational time. The efficiency of this
method is clear from Fig.13∼16.

V. CONCLUSION

In this article, we have investigated optimal grasp points
on a grasped object using the concept of a required external
force set. By using the required external force set, we can
deal with any desired grasps, including force-closure and
equilibrium grasps. Also, we only have to consider the forces
contained in a given required external force set, and not
the whole generable resultant forces. In addition, we can
avoid the frame invariant problem (criterion value changes
with the change of the task (object) coordinate frame). We
have considered an optimization problem from the viewpoint
of decreasing the magnitudes of the contact forces needed
to balance any required external force contained in a given
required external force set. In order to solve the problem,
we have presented an algorithm based on a branch-and-bound
method. We have also presented some numerical examples in
order to show the validity of our approach. In addition, we
discuss the efficiency of our algorithm, from the view point
of iteration number, elimination number of combinations of
contact points, sampling effect of contact points and reduction
of computational time.

In this article, we have assumed that each finger makes a
frictional point contact with the object. However, even when
each finger makes a soft-finger contact with the object, we can
still use our approach due to an expression of the frictional
constraints corresponding to (9) as proposed by Buss et al.
[32].

In addition, even when we would like to use another
criterion such as manipulability and accuracy, we can still
use our approach if we can find the value of the criterion
for a certain required external force at certain grasp points by
utilizing a programming method such as a sequential quadratic
programming.

APPENDIX I
POSITIVE SEMIDEFINITE PROGRAM [33]

Here we summarize a positive semidefinite program. A
positive semidefinite program is formulated as follows:

min
∑m

i=1 biyi
subject to

∑m
i=1 Aiyi −C = S,S � O

(15)

where Ai, C, S are n × n symmetric matrices. The dual
problem of this problem is given by

max C •X
subject to Ai •X (i = 1, · · · ,m), X � O

(16)

where X is a n×n symmetric matrix, X•Y denotes the inner
product of X and Y , namely, the trace of XTY , TrXTY .
These problems can be regarded as an extension of a standard
linear program. Similarly as a linear program, the problem is
solved by a primal-dual interior-point method in a polynomial
time. The number of iteration is given by O(n2.5 log(X0 •
Y 0ε

−1)) where X0 and Y 0 are the initial value of X and
Y , respectively, and ε is the accuracy of an optimal solution.
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